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Abstract
We propose a general partition-based strategy to estimate conditional density with can-

didate densities that are piecewise constant with respect to the covariate. Capitalizing on a
general penalized maximum likelihood model selection result, we prove, on two specific ex-
amples, that the penalty of each model can be chosen roughly proportional to its dimension.
We first study a classical strategy in which the densities are chosen piecewise conditional ac-
cording to the variable. We then consider Gaussian mixture models with mixing proportion
that vary according to the covariate but with common mixture components. This model
proves to be interesting for an unsupervised segmentation application that was our original
motivation for this work.

1 Introduction
Assume we observe n pairs ((Xi, Yi))1≤i≤n of random variables, we are interested in estimating
the law of the second one Yi ∈ Y, called variable, conditionally to the first one Xi ∈ X , called
covariate. In this paper, we assume that the pairs (Xi, Yi) are independent while Yi depends
on Xi through its law. More precisely, we assume that the covariates Xi’s are independent but
not necessarily identically distributed. Assumption on the Yi’s is stronger: we assume that,
conditionally to the Xi’s, they are independent and each variable Yi follows a law of density
s0(·|Xi) with respect to a common known measure dλ. Our goal is to estimate this two-variable
conditional density function s0(·|·) from the observations. In this paper, we apply a penalized
maximum likelihood model selection result of [12] to partition-based collection in which the
conditional densities depend on covariate in a piecewise constant manner.

The original conditional density estimation problem has been introduced by Rosenblatt [37]
in the late 60’s. In a stationary framework, he used a link between s0(y|x) and the supposed
existing densities s0′(x) and s0′′(x, y) of respectively Xi and (Xi, Yi),

s0(y|x) = s0′′(x, y)
s0′(x) ,

and proposed a plugin estimate based on kernel estimation of both s0′′(x, y) and s0′(x). Few
other references on this subject seem to exist before the mid 90’s with a study of a spline
tensor based maximum likelihood estimator proposed by Stone [39] and a bias correction of
Rosenblatt’s estimator due to Hyndman, Bashtannyk, and Grunwald [26]. Kernel based method
have been much studied since as stressed by Li and Racine [33]. To name a few, Fan, Yao,
and Tong [18] and Gooijer and Zerom [21] consider local polynomial estimator, Hall, Wolff, and
Yao [23] study a locally logistic estimator later extended by Hyndman and Yao [27]. Pointwise
convergence properties are considered, and extensions to dependent data are often obtained.
Those results are however non adaptive: their performances depend on a critical bandwidth
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choice that should be chosen according to the regularity of the unknown conditional density. Its
practical choice is rarely discussed with the notable exception of Bashtannyk and Hyndman [5].
Extensions to censored cases have also been discussed for instance by Keilegom and Veraverbeke
[29]. In the approach of Stone [39], the conditional density is estimated using a representation,
a parametrized modelization. This idea has been reused by Györfi and Kohler [22] with a
histogram based approach, by Efromovich [16, 17] with a Fourier basis, and by Brunel, Comte,
and Lacour [11] and Akakpo and Lacour [2] with piecewise polynomial representation. Risks
of those estimators are controlled with a total variation loss for the first one and a quadratic
distance for the others. Furthermore within the quadratic framework, almost minimax adaptive
estimators are constructed using respectively a blockwise attenuation principle and a penalized
model selection approach. Kullback-Leibler type loss, and thus maximum likelihood approach,
has only been considered by Stone [39] as mentioned before and by Blanchard et al. [10] in a
classification setting with histogram type estimators.

In [12], we propose a penalized maximum likelihood model selection approach to estimate s0.
Given a collection of models S = (Sm)m∈M comprising conditional densities and their maximum
likelihood estimates

ŝm = argmin
sm∈Sm

−
n∑
i=1

ln sm(Yi|Xi),

we define, for a given penalty pen(m), the best model S
m̂

as the one that minimizes a penalized
likelihood:

m̂ = argmin
m∈M

−
n∑
i=1

ln ŝm(Yi|Xi) + pen(m).

The main result of [12] is a sufficient condition on the penalty pen(m) such that an oracle type
inequality holds for the conditional density estimation error. In this paper, we show how this
theorem can be used to derive results for two interesting partition-based conditional density
models, inspired by Kolaczyk and Nowak [31], Kolaczyk, Ju, and Gopal [30] and Antoniadis,
Bigot, and Sachs [3].

Both are based on a recursive partitioning of space X , assumed for sake of simplicity to be
equal to [0, 1]dX , they differ by the choice of the density used, once conditioned by covariates: in
the first case, we consider traditional piecewise polynomial models, while, in the second case, we
use Gaussian mixture models with common mixture components. The first case is motivated by
the work of Willett and Nowak [42] where they propose a similar model for Poissonian intensities.
The second one is drived by an application to unsupervised segmentation, which was our original
motivation for this work. For both examples, we prove that the penalty can be chosen roughly
proportional to the dimension of the model.

In Section 2, we summarize the setting and the results of [12]. We describe the loss considered,
explain the penalty structure and present a general penalized maximum likelihood theorem we
have proved. This will be a key tool for the study of the partition-based strategy conducted in
Section 3. We describe first our general partition based approach in Section 3.1 and exemplify it
with piecewise polynomial density with respect to the variable in Section 3.2 and with Gaussian
mixture with varying proportion in Section 3.3. Main proofs are given in Appendix while proofs
of the most technical lemmas are relegated to our technical report [13].
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2 A general penalized maximum likelihood theorem
2.1 Framework and notation
As in [12], we observe n independent pairs ((Xi, Yi))1≤i≤n ∈ (X ,Y)n where the Xi’s are inde-
pendent, but not necessarily of same law, and, conditionally to Xi, each Yi is a random variable
of unknown conditional density s0(·|Xi) with respect to a known reference measure dλ. For any
model Sm, a set of candidate conditional densities, we estimate s0 by the conditional density ŝm
that maximizes the likelihood (conditionally to (Xi)1≤i≤n) or equivalently that minimizes the
opposite of the log-likelihood, denoted -log-likelihood from now on:

ŝm = argmin
sm∈Sm

(
n∑
i=1
− ln(sm(Yi|Xi))

)
.

To avoid existence issue, we should work with almost minimizer of this quantity and define a η
-log-likelihood minimizer as any ŝm that satisfies

n∑
i=1
− ln(ŝm(Yi|Xi)) ≤ inf

sm∈Sm

(
n∑
i=1
− ln(sm(Yi|Xi))

)
+ η.

Given a collection S = (Sm)m∈M of models, we construct a penalty pen(m) and select the best
model m̂ as the one that minimizes

n∑
i=1
− ln(ŝm(Yi|Xi)) + pen(m).

In [12], we give conditions on penalties ensuring that the resulting estimate ŝ
m̂

is a good estimate
of the true conditional density.

We should now specify our goodness criterion. As we are working in a maximum likelihood
approach, the most natural quality measure is the Kullback-Leibler divergence KL. As we
consider law with densities with respect to a known measure dλ, we use the following notation

KLλ(s, t) = KL(sdλ, tdλ) =
{∫

Ω
s
t ln s

t tdλ if sdλ� tdλ
+∞ otherwise.

where sdλ � tdλ means ∀Ω′ ⊂ Ω,
∫

Ω′ tdλ = 0 =⇒
∫

Ω′ sdλ = 0. Remark that, contrary to
the quadratic loss, this divergence is an intrinsic quality measure between probability laws: it
does not depend on the reference measure dλ. However, the densities depend on this reference
measure, this is stressed by the index λ when we work with the non intrinsic densities instead
of the probability measures. As we study conditional densities and not classical densities, the
previous divergence should be further adapted. To take into account the structure of conditional
densities and the design of (Xi)1≤i≤n, we use the following tensorized divergence:

KL⊗nλ (s, t) = E

[
1
n

n∑
i=1

KLλ(s(·|Xi), t(·|Xi))
]
.

This divergence appears as the natural one in this setting and reduces to classical ones in specific
settings:

• If the law of Yi is independent of Xi, that is s(·|Xi) = s(·) and t(·|Xi) = t(·) do not depend
on Xi, this divergence reduces to the classical KLλ(s, t).
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• If the Xi’s are not random but fixed, that is we consider a fixed design case, this divergence
is the classical fixed design type divergence in which there is no expectation.

• If theXi’s are i.i.d., this divergence can be rewritten asKL⊗nλ (s, t) = E [KLλ(s(·|X1), t(·|X1))] .

Note that this divergence is an integrated divergence as it is the average over the index i of the
mean with respect to the law of Xi of the divergence between the conditional densities for a given
covariate value. Remark that more weight is given to regions of high density of the covariates
than to regions of low density and, in particular, divergence values outside the supports of the
Xi’s are not used. When ŝ is an estimator, or any function that depends on the observations,
KL⊗nλ (s, ŝ) measures this (random) integrated divergence between s and ŝ conditionally to the
observations while E

[
KL⊗nλ (s, ŝ)

]
is the average of this random quantity with respect to the

observations.
As often in density estimation, we are not able to control this loss but only a smaller one.

Namely, we use the Jensen-Kullback-Leibler divergence JKLρ with ρ ∈ (0, 1) defined by

JKLρ(sdλ, tdλ) = JKLρ,λ(s, t) = 1
ρ
KLλ (s, (1− ρ)s+ ρt) .

Note that this divergence appears explicitly with ρ = 1
2 in Massart [34], but can also be found

implicitly in Birgé and Massart [9] and Geer [19]. We use the name Jensen-Kullback-Leibler
divergence in the same way Lin [32] use the name Jensen-Shannon divergence for a sibling in an
information theory work. This divergence is smaller than the Kullback-Leibler one but larger,
up to a constant factor, than the squared Hellinger one, d2

λ(s, t) =
∫

Ω |
√
s −
√
t|2dλ, and the

squared L1 distance, ‖s − t‖2λ,1 =
(∫

Ω |s− t|dλ
)2, as proved in our technical report [13]. More

precisely, we use their tensorized counterparts:

d2⊗n
λ (s, t) = E

[
1
n

n∑
i=1

d2
λ(s(·|X ′i), t(·|X ′i))

]
and JKL⊗nρ,λ(s, t) = E

[
1
n

n∑
i=1

JKLρ,λ(s(·|X ′i), t(·|X ′i))
]
.

2.2 Penalty, bracketing entropy and Kraft inequality
Our condition on the penalty is given as a lower bound on its value:

pen(m) ≥ κ0 (Dm + xm)

where κ0 is an absolute constant, Dm is a quantity, depending only on the model Sm, that
measures its complexity (and is often almost proportional to its dimension) while xm is a non
intrinsic coding term that depends on the structure of the whole model collection.

The complexity term Dm is related to the bracketing entropy of the model Sm with respect
to the Hellinger type divergence d⊗nλ (s, t) =

√
d2⊗n
λ (s, t), or more precisely to the bracketing

entropies of its subsets Sm(s̃, σ) =
{
sm ∈ Sm

∣∣d⊗nλ (s̃, sm) ≤ σ
}
. We recall that a bracket [t−, t+]

is a pair of functions such that ∀(x, y) ∈ X ×Y, t−(y|x) ≤ t+(y|x) and that a conditional density
function s is said to belong to the bracket [t−, t+] if ∀(x, y) ∈ X ×Y, t−(y|x) ≤ s(y|x) ≤ t+(y|x).
The bracketing entropy H[·],d⊗n

λ
(δ, S) of a set S is defined as the logarithm of the minimum

number N[·],d⊗n
λ

(δ, S) of brackets [t−, t+] of width d⊗nλ (t−, t+) smaller than δ such that every
function of S belongs to one of these brackets. To define Dm, we first impose a structural
assumption:
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Assumption (Hm). There is a non-decreasing function φm(δ) such that δ 7→ 1
δφm(δ) is non-

increasing on (0,+∞) and for every σ ∈ R+ and every sm ∈ Sm∫ σ

0

√
H[·],d⊗n

λ
(δ, Sm(sm, σ)) dδ ≤ φm(σ).

Note that the function σ 7→
∫ σ

0

√
H[·],d⊗n

λ
(δ, Sm) dδ does always satisfy this assumption. Dm

is then defined as nσ2
m with σ2

m the unique root of 1
σ
φm(σ) =

√
nσ. A good choice of φm is one

which leads to a small upper bound of Dm. The bracketing entropy integral appearing in the
assumption, often call Dudley integral, plays an important role in empirical processes theory,
as stressed for instance in Vaart and Wellner [41]. The equation defining σm corresponds to an
approximate optimization of a supremum bound as shown explicitly in the proof. This definition
is obviously far from being very explicit but it turns out that it can be related to an entropic
dimension of the model. Recall that the classical entropic dimension of a compact set S with
respect to a metric d can be defined as the smallest real D such that there is a C such

∀δ > 0, Hd(δ, S) ≤ D(log
(

1
δ

)
+ C)

where Hd is the classical entropy with respect to metric d. Replacing the classical entropy by a
bracketing one, we define the bracketing dimension Dm of a compact set as the smallest real D
such that there is a C such

∀δ > 0, H[·],d(δ, S) ≤ D(log
(

1
δ

)
+ C).

As hinted by the notation, for parametric model, under mild assumption on the parametrization,
this bracketing dimension coincides with the usual one. It turns out that if this bracketing
dimension exists then Dm can be thought as roughly proportional to Dm. More precisely, in
our technical report [13], we obtain

Proposition 1. • if ∃Dm ≥ 0,∃Cm ≥ 0,∀δ ∈ (0,
√

2], H[·],d⊗n
λ

(δ, Sm) ≤ Vm +Dm ln 1
δ
then

– if Dm > 0, (Hm) holds with a function φm such that Dm ≤

(
2C?,m + 1 +

(
ln n

eC?,mDm

)
+

)
Dm

with C?,m =
(√

Vm
Dm +

√
π
)2

,

– if Dm = 0, (Hm) holds with the function φm(σ) = σ
√
Vm which is such Dm = Vm,

• if ∃Dm ≥ 0,∃Vm ≥ 0,∀σ ∈ (0,
√

2],∀δ ∈ (0, σ], H[·],d⊗n
λ

(δ, Sm(sm, σ)) ≤ Vm +Dm ln σ
δ
then

– if Dm > 0, (Hm) holds with a function φm such that Dm = C?,mDm with C?,m =(√
Vm
Dm +

√
π
)2

,

– if Dm = 0, (Hm) holds with the function φm(σ) = σ
√
Vm which is such Dm = Vm.

We assume bounds on the entropy only for δ and σ smaller than
√

2, but, as for any conditional
density pair (s, t) d⊗nλ (s, t) ≤

√
2,

H[·],d⊗n
λ

(δ, Sm(sm, σ)) = H[·],d⊗n
λ

(δ ∧
√

2, Sm(sm, σ ∧
√

2))

which implies that those bounds are still useful when δ and σ are large.
The coding term xm is constrained by a Kraft type assumption:

5



Assumption (K). There is a family (xm)m∈M of non-negative number such that∑
m∈M

e−xm ≤ Σ < +∞

This condition is an information theory type condition and thus can be interpreted as a
coding condition as stressed by Barron et al. [4].

2.3 A penalized maximum likelihood theorem
For technical reason, we also have to assume a separability condition on our models:

Assumption (Sepm). There exist a countable subset S′m of Sm and a set Y ′m with λ(Y\Y ′m) = 0
such that for every t ∈ Sm, there exists a sequence (tk)k≥1 of elements of S′m such that for every
x and for every y ∈ Y ′m, ln (tk(y|x)) goes to ln (t(y|x)) as k goes to infinity.

The main result of [12] is

Theorem 1. Assume we observe (Xi, Yi) with unknown conditional density s0. Let S = (Sm)m∈M
an at most countable model collection. Assume Assumption (K) holds while Assumptions (Hm)
and (Sepm) hold for every model Sm ∈ S. Let ŝm be a η -log-likelihood minimizer in Sm

n∑
i=1
− ln(ŝm(Yi|Xi)) ≤ inf

sm∈Sm

(
n∑
i=1
− ln(sm(Yi|Xi))

)
+ η

Then for any ρ ∈ (0, 1) and any C1 > 1, there are two constants κ0 and C2 depending only
on ρ and C1 such that, as soon as for every index m ∈M

pen(m) ≥ κ (Dm + xm) with κ > κ0

where Dm = nσ2
m with σm the unique root of 1

σ
φm(σ) =

√
nσ, the penalized likelihood estimate

ŝ
m̂

with m̂ such that

n∑
i=1
− ln(ŝ

m̂
(Yi|Xi)) + pen(m̂) ≤ inf

m∈M

(
n∑
i=1
− ln(ŝm(Yi|Xi)) + pen(m)

)
+ η′

satisfies

E
[
JKL⊗nρ,λ(s0, ŝm̂)

]
≤ C1 inf

m∈M

(
inf

sm∈Sm
KL⊗nλ (s0, sm) + pen(m)

n

)
+ C2

Σ
n

+ η + η′

n
.

This theorem extends Theorem 7.11 of Massart [34], which handles only density estimation,
and reduces to it if all conditional densites considered do not depend on the covariate. The cost
of model selection with respect to the choice of the best single model is proved to be very mild.
Indeed, let pen(m) = κ(Dm + xm) then one obtains

E
[
JKL⊗nρ,λ(s0, ŝm̂)

]
≤ C1 inf

m∈M

(
inf

sm∈Sm
KL⊗nλ (s0, sm) + κ

n
(Dm + xm)

)
+ C2

Σ
n

+ η + η′

n

≤ C1
κ

κ0

(
max
m∈M

Dm + xm
Dm

)
inf
m∈M

(
inf

sm∈Sm
KL⊗nλ (s0, sm) + κ0

n
Dm

)
+ C2

Σ
n

+ η + η′

n
.
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where

inf
m∈M

(
inf

sm∈Sm
KL⊗nλ (s0, sm) + κ0

n
Dm

)
+ C2

Σ
n

+ η

n

is the best known bound for a generic single model, as explained in [12]: As soon as the term
xm remains small relatively to Dm, we have thus an oracle inequality: the penalized estimate
satisfies up to a small factor the same bound as the estimate in the best model. The price to pay
for the use of a collection of model is thus small. The gain is on the contrary huge: we do not
have to know the best model within a collection to almost achieve its performance. Note that as
there exists a constant cρ > 0 such that cρ‖s− t‖⊗n,2λ,1 ≤ JKL⊗nρ,λ(s, t), as proved in our technical
report [13], this theorem implies a bound for the squared L1 loss of the estimator.

For sake of generality, this theorem is relatively abstract. A natural question is the existence
of interesting model collections that satisfy these assumptions. Motivated by an application to
unsupervised hyperspectral image segmentation, already mentioned in [12], we consider the case
where the covariate X belongs to [0, 1]dX and use collections for which the conditional densities
depend on the covariate only in a piecewise constant manner.

3 Partition-based conditional density models
3.1 Covariate partitioning and conditional density estimation
Following an idea developed by Kolaczyk, Ju, and Gopal [30], we partition the covariate domain
and consider candidate conditional density estimates that depend on the covariate only through
the region it belongs. We are thus interested in conditional densities that can be written as

s(y|x) =
∑
Rl∈P

s(y|Rl)1{x∈Rl}

where P is partition of X , Rl denotes a generic region in this partition, 1 denotes the character-
istic function of a set and s(y|Rl) is a density for any Rl ∈ P. Note that this strategy, called as
in Willett and Nowak [42] partition-based, shares a lot with the CART-type strategy proposed
by Donoho [15] in an image processing setting.

Denoting ‖P‖ the number of regions in this partition, the model we consider are thus specified
by a partition P and a set F of ‖P‖-tuples of densities into which (s(·|Rl))Rl∈P is chosen. This
set F can be a product of density sets, yielding an independent choice on each region of the
partition, or have a more complex structure. We study two examples: in the first one, F is
indeed a product of piecewise polynomial density sets, while in the second one F is a set of
‖P‖-tuples of Gaussian mixtures sharing the same mixture components. Nevertheless, denoting
with a slight abuse of notation SP,F such a model, our η-log-likelihood estimate in this model is
any conditional density ŝP,F such that(

n∑
i=1
− ln(ŝP,F (Yi|Xi))

)
≤ min
sP,F∈SP,F

(
n∑
i=1
− ln(sP,F (Yi|Xi))

)
+ η.

We first specify the partition collection we consider. For the sake of simplicity we restrict our
description to the case where the covariate space X is simply [0, 1]dX . We stress that the proposed
strategy can easily be adapted to more general settings including discrete variable ordered or
not. We impose a strong structural assumption on the partition collection considered that allows
to control their complexity. We only consider five specific hyperrectangle based collections of
partitions of [0, 1]dX :
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Figure 1: Example of a recursive dyadic partition with its associated dyadic tree.

• Two are recursive dyadic partition collections.

– The uniform dyadic partition collection (UDP(X )) in which all hypercubes are subdi-
vided in 2dX hypercubes of equal size at each step. In this collection, in the partition
obtained after J step, all the 2dXJ hyperrectangles {Rl}1≤l≤‖P‖ are thus hypercubes
whose measure |Rl| satisfies |Rl| = 2−dXJ . We stop the recursion as soon as the
number of steps J satisfies 2dX

n ≥ |Rl| ≥
1
n .

– The recursive dyadic partition collection (RDP(X )) in which at each step a hypercube
of measure |Rl| ≥ 2dX

n is subdivided in 2dX hypercubes of equal size.

• Two are recursive split partition collections.

– The recursive dyadic split partition (RDSP(X )) in which at each step a hyperrectangle
of measure |Rl| ≥ 2

n can be subdivided in 2 hyperrectangles of equal size by an even
split along one of the dX possible directions.

– The recursive split partition (RSP(X )) in which at each step a hyperrectangle of
measure |Rl| ≥ 2

n can be subdivided in 2 hyperrectangles of measure larger than 1
n

by a split along one a point of the grid 1
nZ in one the dX possible directions.

• The last one does not possess a hierarchical structure. The hyperrectangle partition col-
lection (HRP(X )) is the full collection of all partitions into hyperrectangles whose corners
are located on the grid 1

nZ
dX and whose volume is larger than 1

n .

We denote by S?(X )
P the corresponding partition collection where ?(X ) is either UDP(X ), RDP(X ),

RDSP(X ), RSP(X ) or HRP(X ).
As noticed by Kolaczyk and Nowak [31], Huang et al. [25] or Willett and Nowak [42], the

first four partition collections, (SUDP(X )
P , SRDP(X )

P , SRDSP(X )
P , SRSP(X )

P ), have a tree structure.
Figure 1 illustrates this structure for a RDP(X ) partition. This specific structure is mainly
used to obtain an efficient numerical algorithm performing the model selection. For sake of
completeness, we have also added the much more complex to deal with collection SHRP(X )

P , for
which only exhaustive search algorithms exist.

As proved in our technical report [13], those partition collections satisfy Kraft type inequalities
with weights constant for the UDP(X ) partition collection and proportional to the number ‖P‖
of hyperrectangles for the other collections. Indeed,

Proposition 2. For any of the five described partition collections S?(X )
P , ∃A?0, B?0 , c?0 and Σ0

such that for all c ≥ c?(X )
0 :∑

P∈S?(X)
P

e
−c
(
A
?(X)
0 +B?(X)

0 ‖P‖
)
≤ Σ?(X )

0 e
−cmax

(
A
?(X)
0 ,B

?(X)
0

)
.
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Those constants can be chosen as follow:
? = UDP(X ) ? = RDP(X ) ? = RDSP(X ) ? = RSP(X ) ? = HRP(X )

A?
0 ln

(
max

(
2, 1 + ln n

dX ln 2

))
0 0 0 0

B?
0 0 ln 2 dln(1 + dX)eln 2 dln(1 + dX)eln 2 dXdln neln 2

+dln neln 2

c?
0 0 2d

X

2d
X − 1

2 2 1

Σ?
0 1 + ln n

dX ln 2 2 2(1 + dX) 4(1 + dX)n (2n)dX

where dxeln 2 is the smallest multiple of ln 2 larger than x. Furthermore, as soon as c ≥ 2 ln 2 the
right hand term of the bound is smaller than 1. This will prove useful to verify Assumption (K)
for the model collections of the next sections.

In those sections, we study the two different choices proposed above for the set F . We first
consider a piecewise polynomial strategy similar to the one proposed by Willett and Nowak [42]
defined for Y = [0, 1]dY in which the set F is a product of sets. We then consider a Gaussian
mixture strategy with varying mixing proportion but common mixture components that extends
the work of Maugis and Michel [35] and has been the original motivation of this work. In both
cases, we prove that the penalty can be chosen roughly proportional to the dimension.

3.2 Piecewise polynomial conditional density estimation
In this section, we let X = [0, 1]dX , Y = [0, 1]dY and λ be the Lebesgue measure dy. Note that,
in this case, λ is a probability measure on Y. Our candidate density s(y|x ∈ Rl) is then chosen
among piecewise polynomial densities. More precisely, we reuse a hyperrectangle partitioning
strategy this time for Y = [0, 1]dY and impose that our candidate conditional density s(y|x ∈ Rl)
is a square of polynomial on each hyperrectangle RYl,k of the partition Ql. This differs from the
choice of Willett and Nowak [42] in which the candidate density is simply a polynomial. The two
choices coincide however when the polynomial is chosen among the constant ones. Although our
choice of using squares of polynomial is less natural, it already ensures the positiveness of the
candidates so that we only have to impose that the integrals of the piecewise polynomials are
equal to 1 to obtain conditional densities. It turns out to be also crucial to obtain a control of the
local bracketing entropy of our models. Note that this setting differs from the one of Blanchard
et al. [10] in which Y is a finite discrete set.

We should now define the sets F we consider for a given partition P = {Rl}1≤l≤‖P‖ of
X = [0, 1]dX . Let D = (D1, . . . ,DdY ), we first define for any partition Q = {RYk}1≤k≤‖Q‖ of
Y = [0, 1]dY the set FQ,D of squares of piecewise polynomial densities of maximum degree D
defined in the partition Q:

FQ,D =

s(y) =
∑
RY
k
∈Q

P 2
RY
k

(y)1{y∈RYk }

∣∣∣∣∣∣ ∀R
Y
k ∈ Q, PRY

k
polynomial of degree at most D,∑

RY
k
∈Q
∫
RY
k
P 2
RY
k

(y) = 1


For any partition collection QP = (Ql)1≤l≤‖P‖ =

(
{RYl,k}1≤k≤‖Ql‖

)
1≤l≤‖P‖

of Y = [0, 1]dY , we

can thus defined the set FQP ,D of ‖P‖-tuples of piecewise polynomial densities as

FQP ,D =
{

(s(·|Rl))Rl∈P
∣∣∀Rl ∈ P, s(·|Rl) ∈ FQl,D} .

The model SP,FQP ,D , that is denoted SQP ,D with a slight abuse of notation, is thus the set

SQP ,D =
{
s(y|x) =

∑
Rl∈P

s(y|Rl)1{x∈Rl}

∣∣∣∣∣(s(y|Rl)Rl∈P ∈ FQP ,D
}

9



=

s(y|x) =
∑
Rl∈P

∑
RY
l,k
∈Ql

P 2
Rl×RYl,k

(y)1{y∈RYl,k}1{x∈Rl}

∣∣∣∣∣∣∣
∀Rl ∈ P,∀RYl,k ∈ Ql,
PRl×RYl,k

polynomial of degree at most D,
∀Rl ∈ P,

∑
RY
l,k
∈Ql

∫
RY
l,k
P 2
Rl×RYl,k

(y) = 1


Denoting R×l,k the product Rl×RYl,k, the conditional densities of the previous set can be advan-
tageously rewritten as

s(y|x) =
∑
Rl∈P

∑
RY
l,k
∈Ql

P 2
R×
l,k

(y)1{(x,y)∈R×
l,k}

As shown by Willett and Nowak [42], the maximum likelihood estimate in this model can be
obtained by an independent computation on each subset R×l,k:

P̂R×
l,k

=

∑n
i=1 1{(Xi,Yi)∈R×l,k}∑n

i=1 1{Xi∈Rl}
argmin

P,deg(P )≤D,
∫
RY
l,k

P 2(y)dy=1

n∑
i=1

1{(Xi,Yi)∈R×l,k} ln
(
P 2(Yi)

)
.

This property is important to be able to use the efficient optimization algorithms of Willett and
Nowak [42] and Huang et al. [25].

Our model collection is obtained by considering all partitions P within one of the UDP(X ),
RDP(X ), RDSP(X ), RSP(X ) or HRP(X ) partition collections with respect to [0, 1]dX and, for
a fixed P, all partitions Ql within one of the UDP(Y), RDP(Y), RDSP(Y), RSP(Y) or HRP(Y)
partition collections with respect to [0, 1]dY . By construction, in any cases,

dim(SQP ,D) =
∑
Rl∈P

(
‖Ql‖

dY∏
d=1

(Dd + 1)− 1
)
.

To define the penalty, we use a slight upper bound of this dimension

DQP ,D =
∑
Rl∈P

‖Ql‖
dY∏
d=1

(Dd + 1) = ‖QP‖
dY∏
d=1

(Dd + 1)

where ‖QP‖ =
∑
Rl∈P

‖Ql‖. is the total number of hyperrectangles in all the partitions:

Theorem 2. Fix a collection ?(X ) among UDP(X ), RDP(X ), RDSP(X ), RSP(X ) or HRP(X )
for X = [0, 1]dX , a collection ?(Y) among UDP(Y), RDP(Y), RDSP(Y), RSP(Y) or HRP(Y)
and a maximal degree for the polynomials D ∈ NdY .

Let

S =
{
SQP ,D

∣∣∣P = {Rl} ∈ S?(X )
P and ∀Rl ∈ P,Ql ∈ S?(Y)

P

}
.

Then there exist a C? > 0 and a c? > 0 independent of n, such that for any ρ and for any
C1 > 1, the penalized estimator of Theorem 1 satisfies

E
[
JKL⊗nρ,λ(s0, ŝQ̂P ,D)

]
≤ C1 inf

SQP ,D∈S

(
inf

sQP ,D∈SQP ,D
KL⊗nλ (s0, sQP ,D) + pen(QP ,D)

n

)

+ C2
1
n

+ η + η′

n

10



as soon as

pen(QP ,D) ≥ κ̃DQP ,D

for

κ̃ > κ0

(
C? + c?

(
A
?(X )
0 +B

?(X )
0 +A

?(Y)
0 +B

?(Y)
0

)
+ 2 lnn

)
.

where κ0 and C2 are the constants of Theorem 1 that depend only on ρ and C1. Furthermore
C? ≤ 1

2 ln(8πe) +
∑dY
d=1 ln

(√
2(Dd + 1)

)
and c? ≤ 2 ln 2.

A penalty chosen proportional to the dimension of the model, the multiplicative factor κ̃
being constant over n up to a logarithmic factor, is thus sufficient to guaranty the estimator per-
formance. Furthermore, one can use a penalty which is a sum of penalties for each hyperrectangle
of the partition:

pen(QP ,D) =
∑

R×
l,k
∈QP

κ̃

(
dY∏
d=1

(Dd + 1)
)
.

This additive structure of the penalty allows to use the fast partition optimization algorithm of
Donoho [15] and Huang et al. [25] as soon as the partition collection is tree structured.

In Appendix, we obtain a weaker requirement on the penalty

pen(QP ,D) ≥ κ
((

C? + 2 ln n√
‖QP‖

)
DQP ,D

+ c?

(
A
?(X )
0 +

(
B
?(X )
0 +A

?(Y)
0

)
‖P‖+B

?(Y)
0

∑
Rl∈P

‖Ql‖

))

in which the complexity part and the coding part appear more explicitly. This smaller penalty is
no longer proportional to the dimension but still sufficient to guaranty the estimator performance.
Using the crude bound ‖QP‖ ≥ 1, one sees that such a penalty penalty can still be upper bounded
by a sum of penalties over each hyperrectangle. The loss with respect to the original penalty is
of order κ log ‖QP‖DQP ,D, which is negligible as long as the number of hyperrectangle remains
small with respect to n2.

Some variations around this Theorem can be obtained through simple modifications of its
proof as explained in Appendix. For example, the term 2 ln(n/

√
‖QP‖) disappears if P belongs

to SUDP(X )
P while Ql is independent of Rl and belongs to SUDP(X )

P . Choosing the degrees D of
the polynomial among a family DM either globally or locally as proposed by Willett and Nowak
[42] is also possible. The constant C? is replaced by its maximum over the family considered,
while the coding part is modified by replacing respectively A?(X )

0 by A?(X )
0 + ln |DM | for a global

optimization and B
?(Y)
0 by B

?(Y)
0 + ln |DM | a the local optimization. Such a penalty can be

further modified into an additive one with only minor loss. Note that even if the family and
its maximal degree grows with n, the constant C? grows at a logarithic rate in n as long as the
maximal degree grows at most polynomially with n.

Finally, if we assume that the true conditional density is lower bounded, then

KL⊗nλ (s, t) ≤
∥∥∥∥1
t

∥∥∥∥
∞
‖s− t‖⊗n,2λ,2

11



as shown by Kolaczyk and Nowak [31]. We can thus reuse ideas from Willett and Nowak [42],
Akakpo [1] or Akakpo and Lacour [2] to infer the quasi optimal minimaxity of this estimator
for anisotropic Besov spaces (see for instance in Karaivanov and Petrushev [28] for a definition)
whose regularity indices are smaller than 1 along the axes of X and smaller than D + 1 along
the axes of Y.

3.3 Spatial Gaussian mixtures, models, bracketing entropy and penal-
ties

In this section, we consider an extension of Gaussian mixture that takes account into the covariate
into the mixing proportion. This model has been motivated by the unsupervised hyperspectral
image segmentation problem mentioned in the introduction. We recall first some basic facts
about Gaussian mixtures and their uses in unsupervised classification.

In a classical Gaussian mixture model, the observations are assuming to be drawn from several
different classes, each class having a Gaussian law. Let K be the number of different Gaussians,
often call the number of clusters, the density s0 of Yi with respect to the Lebesgue measure is
thus modeled as

sK,θ,π(·) =
K∑
k=1

πkΦθk (·)

where

Φθk(y) = 1
(2π det Σk)p/2

e−
1
2 (y−µk)′Σ−1

k
(y−µk)

with µk the mean of the kth component, Σk its covariance matrix, θk = (µk,Σk) and πk its
mixing proportion. A model SK,G is obtained by specifying the number of component K as well
as a set G to which should belong the K-tuple of Gaussian (Φθ1 , . . . ,ΦθK ). Those Gaussians
can share for instance the same shape, the same volume or the same diagonalization basis. The
classical choices are described for instance in Biernacki et al. [7]. Using the EM algorithm, or
one of its extension, one can efficiently obtain the proportions π̂k and the Gaussian parameters
θ̂k of the maximum likelihood estimate within such a model. Using tools also derived from
Massart [34], Maugis and Michel [35] show how to choose the number of classes by a penalized
maximum likelihood principle. These Gaussian mixture models are often used in unsupervised
classification application: one observes a collection of Yi and tries to split them into homogeneous
classes. Those classes are chosen as the Gaussian components of an estimated Gaussian mixture
close to the density of the observations. Each observation can then be assigned to a class by a
simple maximum likelihood principle:

k̂(y) = argmax
1≤k≤K̂

π̂kΦ
θ̂k

(y).

This methodology can be applied directly to an hyperspectral image and yields a segmentation
method, often called spectral method in the image processing communit. This method however
fails to exploit the spatial organization of the pixels.

To overcome this issue, Kolaczyk, Ju, and Gopal [30] and Antoniadis, Bigot, and Sachs [3]
propose to use mixture model in which the mixing proportions depend on the covariate Xi

while the mixture components remain constant. We propose to estimate simultaneously those
mixing proportions and the mixture components with our partition-based strategy. In a semantic
analysis context, in which documents replace pixels, a similar Gaussian mixture with varying
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weight, but without the partition structure, has been proposed by Si and Jin [38] as an extension
of a general mixture based semantic analysis model introduced by Hofmann [24] under the name
Probabilistic Latent Semantic Analysis. A similar model has also been considered in the work of
Young and Hunter [43]. In our approach, for a given partition P, the conditional density s(·|x)
are modeled as

sP,K,θ,π(·|x) =
∑
Rl∈P

(
K∑
k=1

πk[Rl]Φθk (·)
)

1{x∈Rl}

which, denoting π[R(x)] =
∑
Rl∈P

π[Rl] 1{x∈Rl}, can advantageously be rewritten

=
K∑
k=1

πk[R(x)]Φθk (·) .

TheK-tuples of Gaussian can be chosen is the same way as in the classical Gaussian mixture case.
Using a penalized maximum likelihood strategy, a partition P̂, a number of Gaussian components
K̂, their parameters θ̂k and all the mixing proportions π̂[R̂l] can be estimated. Each pair of pixel
position and spectrum (x, y) can then be assigned to one of the estimated mixture components
by a maximum likelihood principle:

k̂(x, y) = argmax
1≤k≤K̂

π̂k[R̂l(x)]Φ
θ̂k

(y).

This is the strategy we have used at IPANEMA [6] to segment, in an unsupervised manner,
hyperspectral images. In these images, a spectrum Yi, with around 1000 frequency bands, is
measured at each pixel location Xi and our aim was to derive a partition in homogeneous regions
without any human intervention. This is a precious help for users of this imaging technique as
this allows to focus the study on a few representative spectrums. Combining the classical EM
strategy for the Gaussian parameter estimation (see for instance Biernacki et al. [7]) and dynamic
programming strategies for the partition, as described for instance by Kolaczyk, Ju, and Gopal
[30], we have been able to implement this penalized estimator and to test it on real datasets.
Figure 2 illustrates this methodology. The studied sample is a thin cross-section of maple with
a single layer of hide glue on top of it, prepared recently using materials and processes from
the Cité de la Musique, using materials of the same type and quality that is used for lutherie.
We present here the result for a low signal to noise ratio acquisition requiring only two minutes
of scan. Using piecewise constant mixing proportions instead of constant mixing proportions
leads to a better geometry of the segmentation, with less isolated points and more structured
boundaries. As described in a more applied study [14], this methodology permits to work with
a much lower signal to noise ratio and thus allows to reduce significantly the acquisition time.

We should now specify the models we consider. As we follow the construction of Section 3.1,
for a given segmentation P, this amounts to specify the set F to which belong the ‖P‖-tuples
of densities (s(y|Rl))Rl∈P . As described above, we assume that s(y|Rl) =

∑K
k=1 πk[Rl]Φθk(y).

The mixing proportions within the region Rl, π[Rl], are chosen freely among all vectors of the
K − 1 dimensional simplex SK−1:

SK−1 =
{
π = (π1, . . . , πk)

∣∣∣∣∣∀k, 1 ≤ k ≤ K,πk ≥ 0,
K∑
k=1

πk = 1
}
.
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Figure 2: Unsupervised segmentation result: a) with constant mixing proportions b) with piece-
wise constant mixing proportions.

As we assume the mixture components are the same in each region, for a given number of
components K, the set F is entirely specified by the set G of K-tuples of Gaussian (Φθ1 , . . . ,ΦθK )
(or equivalently by a set Θ for θ = (θ1, . . . , θK)).

To allow variable selection, we follow Maugis and Michel [35] and let E be an arbitrary
subspace of Y = Rp, that is expressed differently for the different classes, and let E⊥ be its
orthogonal, in which all classes behave similarly. We assume thus that

Φθk(y) = ΦθE,k(yE)Φθ
E⊥

(yE⊥)

where yE and yE⊥ denote, respectively, the projection of y on E and E⊥, ΦθE,k is a Gaussian
whose parameters depend on k while Φθ

E⊥
is independent of k. A model is then specified by the

choice of a set GKE for the K-tuples (ΦθE,1 , . . . ,ΦθE,K ) (or equivalently a set ΘK
E for the K-tuples

of parameters (θE,1, . . . , θE,K)) and a set GE⊥ for the Gaussian Φθ
E⊥

(or equivalently a set ΘE⊥

for its parameter θE⊥). The resulting model is denoted SP,K,G

SP,K,G =

sP,K,θ,π(y|x) =
K∑
k=1

πk[R(x)] ΦθE,k (yE) Φθ
E⊥

(yE⊥)

∣∣∣∣∣∣
(ΦθE,1 , . . . ,ΦθE,K ) ∈ GKE ,
Φθ

E⊥
∈ GE⊥ ,

∀Rl ∈ P, π[Rl] ∈ SK−1

 .

The sets GKE and GE⊥ are chosen among the classical Gaussian K-tuples, as described for
instance in Biernacki et al. [7]. For a space E of dimension pE and a fixed number K of classes,
we specify the set

G =
{

(ΦE,θ1 , . . . ,ΦE,θK )
∣∣∣θ = (θ1, . . . , θK) ∈ Θ[·]KpE

}
through a parameter set Θ[·]KpE

defined by some (mild) constraints on the means µk and some
(strong) constraints on the covariance matrices Σk.

The K-tuple of means µ = (µ1, . . . , µK) is either known or unknown without any restriction.
A stronger structure is imposed on the K-tuple of covariance matrices (Σ1, . . . ,ΣK). To define it,
we need to introduce a decomposition of any covariance matrix Σ into LDAD′ where, denoting
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|Σ| the determinant of Σ, L = |Σ|1/pE is a positive scalar corresponding to the volume, D is
the matrix of eigenvectors of Σ and A the diagonal matrix of renormalized eigenvalues of Σ
(the eigenvalues of |Σ|−1/pEΣ). Note that this decomposition is not unique as, for example, D
and A are defined up to a permutation. We impose nevertheless a structure on the K-tuple
(Σ1, . . . ,ΣK) through structures on the corresponding K-tuples of (L1, . . . , LK), (D1, . . . , DK)
and (A1, . . . , AK). They are either known, unknown but with a common value or unknown
without any restriction. The corresponding set is indexed by [µ? L? D? A?]KpE where ? = 0 means
that the quantity is known, ? = K that the quantity is unknown without any restriction and
possibly different for every class and its lack means that there is a common unknown value over
all classes.

To have a set with finite bracketing entropy, we further restrict the values of the means µk,
the volumes Lk and the renormalized eigenvalue matrix Ak. The means are assumed to satisfy
∀1 ≤ k ≤ K, |µk| ≤ a for a known a while the volumes satisfy ∀1 ≤ k ≤ K,L− ≤ Lk ≤ L+
for some known positive values L− and L+. To describe the constraints on the renormalized
eigenvalue matrix Ak, we define the set A(λ−, λ+, pE) of diagonal matrices A such that |A| = 1
and ∀1 ≤ i ≤ pE , λ− ≤ Ai,i ≤ λ+. Our assumption is that all the Ak belong to A(λ−, λ+, pE)
for some known values λ− and λ+.

Among the 34 = 81 such possible sets, six of them have been already studied by Maugis and
Michel [35, 36] in their classical Gaussian mixture model analysis: [µ0 LK D0 A0]KpE , [µK LK D0 AK ]KpE ,
[µK LK DK AK ]KpE , [µK L D0 AK ]KpE , [µK L D0 A]KpE and [µK L D A]KpE . All these cases, as well as
the others, are covered by our analysis with a single proof.

To summarize, our models SP,K,G are parametrized by a partition P, a number of compo-
nents K, a set G of K-tuples of Gaussian specified by a space E and two parameter sets, a
set Θ[µ? L? D? A?]KpE

of K-tuples of Gaussian parameters for the differentiated space E and a set
Θ[µ? L? D? A?]p

E⊥
of Gaussian parameters for its orthogonal E⊥. Those two sets are chosen among

the ones described above with the same constants a, L−, L+, λ− and λ+. One verifies that

dim(SP,K,G) = ‖P‖(K − 1) + dim
(

Θ[µ? L? D? A?]KpE

)
+ dim

(
Θ[µ? L? D? A?]p

E⊥

)
.

Before stating a model selection theorem, we should specify the collections S considered. We
consider sets of model SP,K,G with P chosen among one of the partition collections S?P , K smaller
than KM , which can be theoretically chosen equal to +∞, a space E chosen as span{ei}i∈I where
ei is the canonical basis of Rp and I a subset of {1, . . . , p} is either known, equal to {1, . . . , pE}
or free and the indices [µ? L? D? A?] of ΘE and ΘE⊥ are chosen freely among a subset of the
possible combinations.

Without any assumptions on the design, we obtain

Theorem 3. Assume the collection S is one of the collections of the previous paragraph.
Then, there exist a C? > π and a c? > 0, such that, for any ρ and for any C1 > 1, the

penalized estimator of Theorem 1 satisfies

E
[
JKL⊗nρ,λ(s0, ŝP̂,K,G)

]
≤ C1 inf

SP,K,G∈S

(
inf

sP,K,G∈SP,K,G
KL⊗nλ (s0, sP,K,G) + pen(P,K,G)

n

)
+ C2

n
+ η + η′

n

as soon as

pen(P,K,G) ≥ κ̃1 dim(SP,K,G) + κ̃2DE

for

κ̃1 ≥ κ

((
2C? + 1 +

(
ln n

eC?

)
+

+ c?

(
A
?(X )
0 +B

?(X )
0 + 1

)))
and κ̃2 ≥ κc?
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with κ > κ0 where κ0 and C2 are the constants of Theorem 1 that depend only on ρ and C1 and

DE =


0 if E is known,

pE
if E is chosen among spaces spanned by
the first coordinates,

(1 + ln 2 + ln p
pE

)pE if E is free.

As in the previous section, the penalty term can thus be chosen, up to the variable selection
term DE , proportional to the dimension of the model, with a proportionality factor constant
up to a logarithmic term with n. A penalty proportional to the dimension of the model is thus
sufficient to ensure that the model selected performs almost as well as the best possible model
in term of conditional density estimation. As in the proof of Antoniadis, Bigot, and Sachs [3],
we can also obtain that our proposed estimator yields a minimax estimate for spatial Gaussian
mixture with mixture proportions having a geometrical regularity even without knowing the
number of classes.

Moreover, again as in the previous section, the penalty can have an additive structure, it can
be chosen as a sum of penalties over each hyperrectangle plus one corresponding to K and the
set G. Indeed

pen(P,K,G) =
∑
Rl∈P

κ̃1(K − 1) + κ̃1

(
dim

(
Θ[µ? L? D? A?]KpE

)
+ dim

(
Θ[µ? L? D? A?]p

E⊥

))
+ κ̃2DE

satisfies the requirement of Theorem 3. This structure is the key for our numerical minimization
algorithm in which one optimizes alternately the Gaussian parameters with an EM algorithm
and the partition with the same fast optimization strategy as in the previous section.

In Appendix, we obtain a weaker requirement

pen(P,K,G) ≥ κ
((

2C? + 1 +
(

ln n

eC? dim(SP,K,G)

)
+

)
dim(SP,K,G)

+ c?

(
A
?(X )
0 +B

?(X )
0 ‖P‖+ (K − 1) +DE

))

in which the complexity and the coding terms are more explicit. Again up to a logarithmic term
in dim(SP,K,G), this requirement can be satisfied by a penalty having the same additive structure
as in the previous paragraph.

Our theoretical result on the conditional density estimation does not guaranty good seg-
mentation performance. If data are generated according to a Gaussian mixture with varying
mixing proportions, one could nevertheless obtain the asymptotic convergence of our class esti-
mator to the optimal Bayes one. We have nevertheless observed in our numerical experiments
at IPANEMA that the proposed methodology allow to reduce the signal to noise ratio while
keeping meaningful segmentations.

Two major questions remain nevertheless open. Can we calibrate the penalty (choosing the
constants) in a datadriven way while guaranteeing the theoretical performance in this specific
setting? Can we derive a non asymptotic classification result from this conditional density
result? The slope heuristic, proposed by Birgé and Massart [8], we have used in our numerical
experiments, seems a promising direction. Deriving a theoretical justification in this conditional
estimation setting would be much better. Linking the non asymptotic estimation behavior to a
non asymptotic classification behavior appears even more challenging.
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A Proof for Section 3.2 (Piecewise polynomial conditional
density estimation)

Theorem 2 is obtained by proving that Assumption (HQP ,D) and (SQP ,D) hold for any model
SQP ,D while Assumption (K) holds for any model collection. Theorem 2 is then a consequence
of Theorem 1.

One easily verifies that Assumption (SQP ,D) holds whatever the partition choice. Concerning
the first assumption,

Proposition 3. Under the assumptions of Theorem 2, there exists a D? such that for any model
SQP ,D Assumption (HQP ,D) is satisfied with a function φ such that

DQP ,D ≤
(
C? + ln n2

‖QP‖

)
DQP ,D

with C? = 2D? + 2π.

The proof relies on the combination of Proposition 1 and

Proposition 4. ∀SQP ,D,∀sQP ,D ∈ SQP ,D,

H[·],d⊗n
(
δ, SQP ,D(sQP ,D, σ)

)
≤ DQP ,D

(
1
2 ln n2

‖QP‖
+D? + ln σ

δ

)
.

By using Proposition 2 for both P and Q, we obtain the Kraft type assumption:

Proposition 5. Under the assumptions of Theorem 2, for any collection S, there exists a c? > 0
such that for

xQP ,D = c?

(
A
?(X )
0 +

(
B
?(X )
0 +A

?(Y)
0

)
‖P‖+B

?(Y)
0

∑
Rl∈P

‖Ql‖

)

Assumption (K) is satisfied with
∑

SQP ,D∈S
e−xQP ,D ≤ 1.

Its complete proof can be found in the technical report [13].

A.1 Proof of Proposition 4
We rely on a link between ‖ · ‖2 and ‖ · ‖∞ structures of the square roots of the models and a
relationship between bracketing entropy and metric entropy for ‖ · ‖∞ norms.

Following Massart [34], we define the following tensorial norm on functions u(y|x)

‖u‖2⊗n2 = E

[
1
n

n∑
i=1
‖u(·|Xi)‖22

]
and ‖u‖2,⊗n∞ = E

[
1
n

n∑
i=1
‖u(·|Xi)‖2∞

]
.

As the reference measure is the Lebesgue measure on [0, 1]dY , ‖u‖2⊗n∞ ≥ ‖u‖2⊗n2 . By definition
d⊗n(s, t) = ‖

√
s−
√
t‖⊗n2 and thus for any model Sm and any function sm ∈ Sm

H[·],d⊗n (δ, Sm(sm, σ)) = H[·],‖.‖⊗n2

(
δ,
{
u ∈

√
Sm

∣∣∣‖u−√sm‖⊗n2 ≤ σ
})
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If
√
Sm is a subset of a linear space

√
Sm of dimension Dm, as in our model,

H[·],d⊗n (δ, Sm(sm, σ)) ≤ H[·],‖.‖⊗n2

(
δ,
{
u ∈

√
Sm

∣∣∣‖u−√sm‖⊗n2 ≤ σ
})

so that one can replace, without loss of generality, √sm by 0 and use

H[·],d⊗n (δ, Sm(sm, σ)) ≤ H[·],‖.‖⊗n2

(
δ,
{
u ∈

√
Sm

∣∣∣‖u‖⊗n2 ≤ σ
})

.

Using now ‖ · ‖⊗n∞ ≥ ‖ · ‖
⊗n
2 , one deduces

H[·],d⊗n (δ, Sm(sm, σ)) ≤ H[·],‖.‖⊗n∞

(
δ,
{
u ∈

√
Sm

∣∣∣‖u‖⊗n2 ≤ σ
})

.

As for any u, [u−δ/2, u+δ/2] is a δ-bracket for the ‖·‖⊗n∞ norm, any covering of
{
u ∈
√
Sm

∣∣∣‖u‖⊗n2 ≤ σ
}

by ‖ · ‖⊗n∞ ball of radius δ/2 yields a covering by the corresponding brackets. This implies

H[·],d⊗n (δ, Sm(sm, σ)) ≤ H‖.‖⊗n∞

(
δ

2 ,
{
u ∈

√
Sm

∣∣∣‖u‖⊗n2 ≤ σ
})

where Hd(δ, S), the classical entropy, is defined as the logarithm of the minimum number of ball
of radius δ with respect to norm d covering the set S.

The following proposition, proved in next section, is similar to a proposition of Massart [34].
It provides a bound for this last entropy term under an assumption on a link between ‖ · ‖2⊗n∞
and ‖ · ‖2⊗n2 structures:

Proposition 6. For any basis {φk}1≤k≤Dm of
√
Sm such that

∀β ∈ RDm , ‖
Dm∑
k=1

βkφk‖2⊗n2 ≥ ‖β‖22,

let

rm({φk}) = sup∑Dm
k=1

βkφk 6=0

1√
Dm
‖
∑Dm
k=1 βkφk‖⊗n∞
‖β‖∞

.

and let rm be the infimum over all suitable bases.
Then rm ≥ 1 and

H‖.‖⊗n∞

(
δ

2 ,
{
u ∈

√
Sm

∣∣∣‖u‖⊗n2 ≤ σ
})
≤ Dm

(
Cm + ln σ

δ

)
with Cm = ln (κ∞rm) and κ∞ ≤ 2

√
2πe.

In our setting, using a basis of Legendre polynomials, we are able to derive from Proposition 6
Proposition 7. For any model of Section 3.2,

rQP ,D ≤
dY∏
d=1

(√
Dd + 1

√
2Dd + 1

)
sup

R×
l,k
∈QP

1√
‖QP‖

√
|R×l,k|

so that ∀sQP ,D ∈ SQP ,D,

H[·],d⊗n
(
δ, SQP ,D(sQP ,D, σ)

)
≤ DQP ,D

(
CQP ,D + ln σ

δ

)
with CQP ,D = ln

(
κ∞rQP ,D

)
and κ∞ ≤ 2

√
2πe.
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A proof, essentially computational, can be found in our technical report [13]. One easily
verifies that

sup
R×
l,k
∈QP

1√
‖QP‖

√
|R×l,k|

≤

{
1 if all hyperrectangles have same sizes√

n2

‖QP‖ otherwise.

Remark that when ?(X ) = UDP(X ), ?(Y) = UDP(Y) and Ql is independent of Rl, all the
hyperrectangles have same sizes and that the n2 corresponds to the arbitrary limitation imposed
on the minimal size of the segmentations. If we limit this minimal size to 1√

n
instead of 1

n this
factor becomes n.

Let

D? = ln
(
κ∞

dY∏
k=1

(√
Dk + 1

√
2Dk + 1

))

we have slightly more than Proposition 4 as ∀sQP ,D ∈ SQP ,D,

H[·],d⊗n
(
δ, SQP ,D(sQP ,D, σ)

)
≤ DQP ,D

{(
D? + ln σ

δ

)
for the same size case(

1
2 ln n2

‖QP‖ +D? + ln σ
δ

)
otherwise

A.2 Proofs of Proposition 6 and Proposition 7
Proof of Proposition 6. Let (φk)1≤k≤Dm be a basis of

√
Sm satisfying

∀β ∈ RDm ,

∥∥∥∥∥
Dm∑
k=1

βkφk

∥∥∥∥∥
2,⊗n

2

≥ ‖β‖22.

Note that for β defined by ∀1 ≤ k ≤ Dm, βk = 1∥∥∥∥∥
Dm∑
k=1

βkφk

∥∥∥∥∥
2,⊗n

∞

≥

∥∥∥∥∥
Dm∑
k=1

βkφk

∥∥∥∥∥
2,⊗n

2

≥ ‖β‖22 = Dm = Dm‖β‖2∞

so that rm(φ) ≥ 1.
Let the grid Gm(δ, σ):{
β ∈ RDm

∣∣∣∣∀1 ≤ k ≤ Dm, βk ∈ δ√
Dmrm(φ)

Z and min
β′,‖β′‖2≤σ

‖β − β′‖∞ ≤
δ

2
√
Dmrm(φ)

}
.

By definition, for any u′ ∈
√
Sm such that ‖u′‖⊗n2 ≤ σ there is a β′ such that u′ =

∑Dm
k=1 β

′
kφk

and ‖β′‖2 ≤ σ. By construction, there is a β ∈ Gm(δ, σ) such that

‖β − β′‖∞ ≤
δ

2
√
Dmrm(φ)

.

Definition of rm implies then that∥∥∥∥∥
Dm∑
k=1

βkφk −
Dm∑
k=1

β′kφk

∥∥∥∥∥
⊗n

∞

≤ rm(φ)
√
Dm‖β − β′‖∞
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≤ δ

2 .

The set
{∑Dm

k=1 βkφk

∣∣∣β ∈ Gm(δ, σ)
}
is thus a δ

2 covering of
{
u ∈
√
Sm

∣∣∣‖u‖⊗n2 ≤ σ
}
for the ‖·‖⊗n∞

norm. It remains thus only to bound the cardinality of Gm(δ, σ).
Let Gm(δ, σ) be the union of all hypercubes of width δ√

Dmrm(φ) centered on the grid Gm(δ, σ),
by construction, for any β ∈ Gm(δ, σ) there is a β′ with ‖β′‖2 ≤ σ such that ‖β′ − β‖∞ ≤

δ√
Dmrm(φ) . As ‖β′ − β‖2 ≤

√
Dm‖β′ − β‖∞, this implies ‖β‖2 ≤ σ + δ

rm(φ) . We then deduce

Vol
(
Gm(δ, σ)

)
= |Gm(δ, σ)|

(
δ√

Dmrm(φ)

)Dm
≤ Vol

({
β ∈ RDm

∣∣∣∣‖β‖2 ≤ σ + δ

rm(φ)

})
≤
(
σ + δ

rm(φ)

)Dm
Vol

({
β ∈ RDm

∣∣‖β‖2 ≤ 1
})

and thus

|Gm(δ, σ)| ≤
(

1 + σrm(φ)
δ

)Dm
DDm/2m Vol

({
β ∈ RDm

∣∣‖β‖2 ≤ 1
})

and as σrm(φ)
δ ≥ 1 and Vol

({
β ∈ RDm

∣∣‖β‖2 ≤ 1
})
≤
(

2πe
Dm

)Dm/2

|Gm(δ, σ)| ≤
(

2
√

2πerm(φ)σ
δ

)Dm
which concludes the proof.

Instead of Proposition 7, by mimicking a proof of Massart [34], we prove in our technical
report [13] an extended version of it in which the degree of the conditional densities may depend
on the hyperrectangle. More precisely, we reuse the partition P ∈ S?(X )

P and the partitions
Ql ∈ S?(Y)

P for Rl ∈ P and define now the model SQP ,D as the set of conditional densities such
that

s(y|x) =
∑

R×
l,k
∈QP

P 2
R×
l,k

(y)1{(x,y)∈R×
l,k}

where PR×
l,k

is a polynomial of degree at most D(R×l,k) =
(

D1(R×l,k), . . . ,DdY (R×l,k)
)

which
depends on the leaf.

Instead of the true dimension, we use a slight upper bound

DQP ,D =
∑
Rl∈P

∑
RY
l,k
∈Ql

dY∏
d=1

(
Dd(R×l,k) + 1

)
=

∑
R×
l,k
∈QP

dY∏
d=1

(
Dd(R×l,k) + 1

)

Note that the space SQP ,D introduced in the main part of the paper corresponds to the case
where the degree D(R×l,k) does not depend on the hyperrectangle R×l,k.
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Proposition 8. There exists

rQP ,D ≤
supR×

l,k
∈QP

∏dY
d=1

(∑
Dd≤Dd(R×

l,k
)
√

2Dd + 1
)

infR×
l,k
∈QP

∏dY
d=1

√
Dd(R×l,k) + 1

sup
R×
l,k
∈QP

1√
‖P‖

√
|R×l,k|

such that ∀sQP ,D ∈ SQP ,D,

H[·],d⊗n
(
δ, SQP ,D(sQP ,D, σ)

)
≤ DQP ,D

(
CQP ,D + ln σ

δ

)
with CQP ,D = ln

(
κ∞rQP ,D

)
and κ∞ ≤ 2

√
2πe.

Proposition 7 is deduced from this proposition with the help of the simple upper bound∑
Dd≤Dd(R×

l,k
)

√
2Dd + 1 ≤ (Dd(R×l,k) + 1)

√
2Dd(R×l,k) + 1.

As

supR×
l,k
∈QP

∏dY
d=1

(∑
Dd≤Dd(R×

l,k
)
√

2Dd + 1
)

infR×
l,k
∈QP

∏dY
d=1

√
Dd(R×l,k) + 1

≤
dY∏
d=1

max
√

2(Dd + 1),

once a maximal degree is chosen along each axis, the equivalent of constant C? of 2 depends
only on this maximal degrees. Assumption HQP ,D holds then, with the same constants, simul-
taneaously for all models of both global choice and local choice strategies. Obtaining the Kraft
type assumption, Assumption (K) is only a matter of taking into account the augmentation of
the number of models within the collection. Replacing respectively A?(X )

0 by A?(X )
0 + ln |DM | for

global optimization and B
?(Y)
0 by B?(Y)

0 + ln |DM | for local optimization, where |DM | denotes
the size of the family of possible degrees, turns out to be sufficient as mentioned earlier.

The proof of Proposition 8 is essentially computational and thus relegated to our extended
technical report.

B Proofs for Section 3.3 (Spatial Gaussian mixtures, mod-
els, bracketing entropy and penalties)

As in the piecewise polynomial density case, Theorem 3 is obtained by showing that Assumptions
(HP,K,G), (SP,K,G) and (K) hold for any collection.

Again, one easily verifies that Assumption (SP,K,G) holds. For the complexity assumption,
combining 1 with a bound on the bracketing entropy of the models of type

H[·],dsup(δ, SP,K,G) ≤ dim(SP,K,G)
(
C + ln 1

δ

)
,

one obtains
Proposition 9. There exists a constant C depending only on a, L−, L+, λ− and λ+ such that
for any model SP,K,G of Theorem 3 Assumption (HP,K,G) is satisfied with a function φ such that

DP,K,G ≤

2
(√

C +
√
π
)2

+ 1 +

ln n

e
(√

C +
√
π
)2

dim(SP,K,G)


+

 dim(SP,K,G).
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For the Kraft assumption, one can verify that

Proposition 10. For any collections S of Theorem 3, there is a c? such that for the choice

xP,K,G = c?

(
A
?(X )
0 +B

?(X )
0 ‖P‖+ (K − 1) +DE

)
,

Assumption (K) holds with
∑

SP,K,G∈S
e−xP,K,G ≤ 1.

As for the piecewise polynomial case section, the main difficulty lies in controlling the brack-
eting entropy of the models. A proof of Proposition 10 can be found in our technical report [13].

We focus thus on the proof of Proposition 9. Due to the complex structure of spatial mixture,
we did not manage to bound the bracketing entropy of local model. We derive only an upper
bound of the bracketing entropy H[·],d⊗n (δ, SP,K,G), but one that is independent of the distribu-
tion law of (Xi)1≤i≤n: the bracketing entropy with a sup norm Hellinger distance dsup =

√
d2 sup,

H[·],dsup(δ, SP,K,G), where d2 sup is defined by

d2 sup(s, t) = sup
x
d2 (s(·|x), t(·|x)) .

Obviously d2 sup ≥ d2⊗n and thus H[·],dsup(δ, SP,K,G) ≥ H[·],d⊗n (δ, SP,K,G). This upper bound is
furthermore design independent.

Proposition 9 is a direct consequence of Proposition 1 and

Proposition 11. There exists a constant C depending only on a, L−, L+, λ− and λ+ such that
for any model SP,K,G of Theorem 3:

H[·],dsup(δ, SP,K,G) ≤ dim(SP,K,G)
(
C + ln 1

δ

)
.

B.1 Entropy of spatial mixtures
Proof of Proposition 11. While we use classical Hellinger distance to measure the complexity of
the simplex SK−1 and the set GE⊥ , we use a sup norm Hellinger distance on GKE defined by

d2 max ((s1, . . . , sK), (t1, . . . , tK)) = sup
k
d2(sk, tk).

We say that [(s1, . . . , sK), (t1, . . . , tK)] is a bracket of GKE if ∀1 ≤ k ≤ K, sk ≤ tk.
Using a similar proof than Genovese and Wasserman [20], we decompose the entropy in three

parts with:

Lemma 1. For any δ ∈ (0,
√

2],

H[·],dsup(δ, SP,K,G) ≤ ‖P‖H[·],d(δ/3,SK−1) +H[·],dmax(δ/9,GKE ) +H[·],d(δ/9,GE⊥).

We bound those bracketing entropies with the help of two results. We first use a Lemma
proved in Genovese and Wasserman [20] that implies the existence of a universal constant CS
such that

H[·],d(δ/3,SK−1) ≤ (K − 1)
(
CS + ln 1

δ

)
:
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Lemma 2. For any δ ∈ (0,
√

2],

H[·],d(δ/3,SK−1) ≤ (K − 1)
(
CSK−1 + ln 1

δ

)
with CSK−1 = 1

K − 1 lnK + K

2(K − 1) ln(2πe) + ln 3
√

2

Furthermore, uniformly on K: CSK−1 ≤ ln 2 + 1
2 ln(2πe) + ln 3

√
2 = CS

We then rely on Proposition 12 to handle the bracketing entropy of Gaussian K-tuples col-
lection. It implies the existence of two constants C[?]? and C[?] depending only on a, L−, L+, λ−
and λ+ such that

H[·],dmax
(
δ/9,GKE

)
≤ dim(GKE )

(
C[?]? + ln 1

δ

)
H[·],d(δ/9,GE⊥) ≤ dim(GE⊥)

(
C[?] + ln 1

δ

)
.

As dim(SK,P,G) = ‖P‖(K − 1) + dim(GKE ) + dim(GE⊥), we obtain Proposition 11 with C =
max(CS , C[?]? , C[?]).

B.2 Entropy of Gaussian families
Proposition 12. For any δ ∈ (0,

√
2],

H[·],dmax(δ/9,G[µ?,L?,D?,A?]K
E

) ≤ V[µ?,L?,D?,A?]KpE
+D[µ?,L?,D?,A?]KpE

ln 1
δ

where D[µ?,L?,D?,A?]KpE
= dim

(
Θ[µ?,L?,D?,A?]KpE

)
= cµ?Dµ,pE +cL?DL+cD?DD,pE +cA?DA,pE and

V[µ?,L?,D?,A?]KpE
= cµ?Vµ,pE+cL?VL,pE+cD?VD,pE+cA?VA,pE with


cµ0 = cL0 = cD0 = cA0 = 0
cµK = cLK = cDK = cAK = K

cµ = cL = cD = cA = 1
,


Dµ,pE = pE

DL = 1
DD,pE = pE(pE−1)

2
DA,pE = pE − 1

and



Vµ,pE = pE

ln

1 + 108 a√
L−λ−

λ−
λ+

pE


VL,pE = ln

(
1 + 39 ln

(
L+
L−

)
pE

)
VD,pE = pE(pE−1)

2

(
2 ln cS

pE(pE−1) +
(

ln
(

252λ+
λ−
pE

)))
VA,pE = (pE − 1)

(
ln
(

2 + 255λ+
λ−

ln
(
λ+
λ−

)
pE

))
where cS is a universal constant.

Proof of Proposition 12. We consider all models G[µ? L? A? D?]K
E
at once by a “tensorial” construc-

tion of a suitable δ/9 bracket collection.
We first define a set of grids for the mean µ, the volume L, the eigenvector matrix D and the

renormalized eigenvalue matrix A from which one constructs the bracket collection.

• For any δµ, the grid Gµ(a, pE , δµ) of [−a, a]pE :

Gµ(a, pE , δµ) =
{
gδµ

∣∣∣∣g ∈ ZpE , ‖g‖∞ ≤
a

δµ

}
.
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• For any δL, the grid GL(L−, L+, δL) of [L−, L+]:

GL(L−, L+, δL) = {L−(1 + δL)g|g ∈ N, L−(1 + δL)g ≤ L+} .

• For any δD, the grid GD(pE , δD) of SO(pE) made of the elements of a δD-net with respect
to the ‖ · ‖2 operator norm (as described by Szarek [40]).

• For any δA, the grid GA(λ−, λ+, pE , δA) of A(λ−, λ+(1 + δA), pE):

GA(λ−, λ+, pE , δA) = {A ∈ A(λ−, λ+(1 + δA), pE)|∀1 ≤ i < pE ,∃gi ∈ N, Ai = λ−(1 + δA)gi} .

Obviously, for any µ ∈ [−a, a], there is a µ̃ ∈ Gµ(a, pE , δµ) such that

‖µ̃− µ‖2 ≤ pEδ2
µ

while
|Gµ(a, pE , δµ)| ≤

(
1 + 2 a

δµ

)pE
≤ max

(
2pE ,

(
4a
δµ

)pE)
.

In the same fashion, for any L in [L−, L+], there is a L̃ ∈ GL(L−, L+, δL) such that (1+δL)−1LjL <
L ≤ LjL while

|GL(L−, L+, δL)| ≤ 1 +
ln
(
L+
L−

)
ln(1 + δL) .

If we further assume that δL ≤ 1
12 then ln(1 + δL) ≥ 12

13δL and

|GL(L−, L+, δL)| ≤ 1 +
13 ln

(
L+
L−

)
12δL

.

By definition on a δD-net, for any D ∈ SO(pE) there is a D̃ ∈ GD(pE , δD) such that

∀x, ‖(D̃ −D)x‖2 ≤ δD‖x‖2.

As proved by Szarek [40], it exists a universal constant cS such that, as soon as δD ≤ 1

|GD(pE , δD)| ≤ cS
(

1
δD

) pE(pE−1)
2

where pE(pE−1)
2 is the intrinsic dimension of SO(pE).

The structure of the grid GA(λ−, λ+, pE , δA) is more complex. Although, looking at condition
on the pE − 1 first diagonal values,

|GA(λ−, λ+, pE , δA)| ≤

2 +
ln
(
λ+
λ−

)
ln(1 + δA)

pE−1

where pE−1 is the intrinsic dimension of A(λ−, λ+, pE). If we further assume that δA ≤ 1
84 then

ln(1 + δA) ≥ 84
85δA and thus

|GA(λ−, λ+, pE , δA)| ≤

2 +
85 ln

(
λ+
λ−

)
84δA

pE−1

.

A key to the succes of this construction is the following approximation property of this grid
obtained in our technical report [13] with a calculatory proof:
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Lemma 3. For A ∈ A(λ−, λ+, pE) there is Ã ∈ GA(λ−, λ+, pE , δA) such that

|Ã−1
i,i −A

−1
i,i | ≤ δAλ

−1
− .

Define cµ0 = cL0 = cD0 = cA0 = 0, cµK = cLK = cDK = cAK = K, cµ = cL = cD = cA = 1.
Let fK,µ?,pE be the application from (RpE )cµ? to RK defined by

0 7→ (µ0,1, . . . , µ0,K) if µ? = µ0

(µ1, . . . , µK) 7→ (µ1, . . . , µK) if µ? = µK

µ 7→ (µ, . . . , µ) if µ? = µ

,

and fK,L? (respectively fK,D?,pE and fK,A?,pE ) be the similar application from (R+)cL? into
(R+)K (respectively from (SO(pE))cD? into (SO(pE))K and from (A(0,+∞, pE))cA? into (A(0,+∞, pE))K).

By definition, the image of

([−a, a]pE )cµ? × ([L−, L+])cL? × (SO(pE))cD? × (A(λ−, λ+, pE))cA?

by
(
fK,µ?,pE ⊗ fLK,·,pE ⊗ fK,D?,pE ⊗ fK,A?

)
is, up to reordering, the set of parameters of all

K-tuples of Gaussian densities of type [µ? L?,D?,A?]K .
We construct our δ/9 bracket covering with a grid on those parameters. For any K-tuple of

Gaussian parameters ((µ1,Σ1), . . . , (µK ,ΣK)) and any δΣ, we associate the K-tuple of pairs((
(1 + δΣ)−pEΦµ1,(1+δΣ)−1Σ1 , (1 + δΣ)pEΦµ1,(1+δΣ)Σ1

)
, . . . ,

(
(1 + δΣ)−pEΦµK ,(1+δΣ)−1ΣK , (1 + δΣ)pEΦµK ,(1+δΣ)ΣK

))
.

We prove in our technical report [13] that, for γ = 18/49 and β =
√

cosh( 1
6 ) + 1

2 , the choice

δµ =

√
γL−λ−

λ−
λ+

9β
δ

pE
, δL = 1

18β
δ

pE
≤ 1

12 , δD = δA = 1
126β

λ−
λ+

δ

pE
≤ 1

84 , δΣ = 1
9β

δ

pE
≤ 1

8

is such that the image of

(Gµ(a, pE , δµ))cµ? × (GL(L−, L+, δL))cL? × (GD(pE , δD))cD? × (GA(λ−, λ+, pE , δA))cA?

by fK,µ?,pE ⊗ fLK,·,pE ⊗ fK,D?,pE ⊗ fK,A? is a set of parameters corresponding to a set of pairs
that is a δ/9-bracket covering of G[µ? L? D? A?]K

E
for the dmax norm.

The cardinality of this δ/9-bracket covering is bounded by1 + 18aβpE√
γL−λ−

λ−
λ+
δ

pEcµ?

×

1 +
39β ln

(
L+
L−

)
pE

2δ

cL?

×

cS (126β λ+
λ−
pE

δ

) pE(pE−1)
2


cD?

×


2 +

255β λ+
λ−

ln
(
λ+
λ−

)
pE

2δ

pE−1
cA?

So

H[·],dmax(δ/9,G[µ?,L?,D?,A?]K
E

)
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≤ cµ?pE

ln

1 + 18βapE√
γL−λ−

λ−
λ+

+ ln 1
δ

+ cL?

(
ln
(

1 + 39
2 β ln

(
L+

L−

)
pE

)
+ ln 1

δ

)

+ cD?
pE(pE − 1)

2

(
2 ln cS

pE(pE − 1) + ln
(

126β λ+

λ−
pE

)
+ ln 1

δ

)
+ cA?(pE − 1)

(
ln
(

2 + 255
2 β

λ+

λ−
ln
(
λ+

λ−

)
pE

)
+ ln 1

δ

)
which concludes the proof as soon as one notices that 1/9 ≤ γ ≤ 1/3 and 1 ≤ β ≤ 2.
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