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Abstract
In the random coefficients binary choice model, a binary variable equals 1 iff an index

X>β is positive. The vectors X and β are independent and belong to the sphere Sd−1 in
Rd. We prove lower bounds on the minimax risk for estimation of the density fβ over Besov
bodies where the loss is a power of the Lp(Sd−1) norm for 1 ≤ p ≤ ∞. We show that a hard
thresholding estimator based on a needlet expansion with data-driven thresholds achieves these
lower bounds up to logarithmic factors.
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1 Introduction
Discrete choice models (see, e.g., [21]) have applications in many areas ranging from planning of
public transportation, economics of industrial organizations, evaluation of public policies, among
others. This paper considers the binary choice model. There, agents (consumer, firm, country,
etc.) choose between two exclusive alternatives 1 or -1 (e.g., buying a good or not) the one that
yields the highest utility. The utility that an agent i gets from choosing alternative -1 (resp. from
choosing 1) is assumed to have the form

u−1,i = z>−1,iγi + ε−1,i (resp. u1,i = z>1,iγi + ε1,i), (1)

where z−1,i (resp. z1,i) is a vector of d − 1 characteristics of alternative -1 (resp. 1) for agent
i, d ≥ 2, γi are preferences of agent i for the characteristics, and ε−1,i and ε1,i absorb both the
usual error terms and constants. In (1), the preferences are allowed to vary across individuals;
namely, they are heterogeneous. This translates into a vector of coefficients γ indexed by i that
we assume random. The characteristics of the alternatives are indexed by the agents, for example
they can be characteristics of two goods that a consumer has to choose upon interacted with
individual characteristics like age or distance. We assume that the random coefficients and errors
are independent from the characteristics. The statistician observes a sample of characteristics and
choices for agents i = 1, . . . , n, but γi, u1,i, and u−1,i are not observed. Observing the choices
corresponds to observing the sign yi of the net utility u1,i−u−1,i. Indeed, agent i prefers 1 (yi = 1)
if and only if the net utility for 1 is positive, i.e.,

u1,i − u−1,i = ε1,i − ε−1,i + (z1,i − z−1,i)>γi > 0, (2)

and prefers -1 (yi = −1) when
u1,i − u−1,i < 0.
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We assume that the probability that
∣∣(ε1,i − ε−1,i, γ

>
i )>

∣∣ is the 0 and thus that agent i is indifferent
(i.e., u1,i − u−1,i = 0) on a set of 0 probability. Hence, the linear random coefficients binary choice
model is

yi = sign
(
x>i βi

)
, (3)

where, for a real number a, sign(a) is 1 if a > 0, -1 if a < 0, and is 0 if a = 0,

xi = (1, (z1,i − z−1,i)>)>/
∣∣(1, (z1,i − z−1,i)>)>

∣∣ ,
βi = (ε1,i − ε−1,i, γ

>
i )>/

∣∣(ε1,i − ε−1,i, γ
>
i )>

∣∣ ,
and |·| is the Euclidean norm in Rd. Like in [3, 4, 10, 13] among others, we consider a nonparametric
specification of the joint distribution of β and this model is more general than the Logit, Probit,
and Mixed-Logit models. Note that it is important to avoid restricting the dependence between the
coordinates of (ε1 − ε−1, γ

>) since they can be functions of a deep heterogeneity parameter (e.g.,
the type of a consumer).

We denote by Y , Z1, Z−1, X, ε1, ε−1, γ, and β the population quantities corresponding to the
lower cases letters indexed by i. The random vectors X and β are elements of the unit sphere Sd−1

of Rd. For the main results of this paper we maintain the following restrictions on the distribution
of (β>, X>)>.

Assumption 1 (A1.1 ) X and β are independent,

(A1.2 ) X and β have densities fX and fβ with respect to the spherical measure σ.

Assumption 2 (A2.1 ) fβ(x)fβ(−x) = 0 for a.e. x in Sd−1,

(A2.2 ) The support of X, denoted by supp(fX), is H+ = {x ∈ Sd−1 : x1 ≥ 0},

(A2.3 ) fX is known and we have AX
def= ‖fX‖L∞(H+) <∞ and BX

def= ‖1/fX‖L∞(H+) <∞.

Under Assumption 1, fβ is solution of the ill-posed inverse problem: for a.e. x ∈ H+

E[Y |X = x] =
∫
Sd−1

sign
(
x>y

)
fβ(y)dσ(y) def= Kfβ(x). (4)

The operator K in (4) is a convolution on Sd−1. Estimation of fβ in (4) is thus related to statistical
deconvolution on Sd−1 (see, e.g., [12, 16, 19]). However, the left-hand side of (4) is not a density but
a regression function where the regressors are random. The identification issue in this model stems
from the fact that: (1) the distribution of the observed data only characterizes Kfβ on supp(fX)
which is a proper subset of Sd−1 and (2) due to the sign function K has an infinite dimensional null
space. The support of X can only be as large as H+ because the first coordinate of X is positive.
This is because we allow for the term ε1,i − ε−1,i in (2).

A simple estimator for the density of β in this model is given in [10]. There, rates of convergence
for the Lp-losses for 1 ≤ p ≤ ∞ over Sobolev ellipsoïds based on the same Lp space (as well as
confidence intervals for the value of the density at a point, treatment of endogenous regressors,
and of models where some coefficients are nonrandom) are obtained under similar assumptions for
choices of the smoothing parameters which depend on unknown parameters of the Sobolev ellipsoïds.
It is assumed in [10] that the support of β lies in an (unknown) hemisphere, namely, that there
exists n (unknown) in Sd−1 such that P(n>β > 0) = 1. This assumption first appeared in [13]
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and is stronger than (A2.1). It implies that for some difference of the characteristics, or taking a
limit of these, everyone chooses the same alternative. In contrast, (A2.1) is much less restrictive
and does not imply "unselected samples". However, everything in [10] also holds under (A2.1).
Assumption (A2.2) requires that the support of Z1 − Z−1 is Rd and is also made in [10, 13]. [9]
allows for continuous regressors which support is a proper subset at the expense of assuming some
form of unselected samples and relying on integrability assumptions involving fβIt is possible to
obtain identification of fβ when we relax (A2.2) and the requirement that fX exists (see (A1.2)).
This is done in [8]. The estimation in this case is the subject of future work. (A2.3) strengthens
(A2.2) and is used to obtain rates of convergence. It could be viewed as an assumption on the tails
of X. It is relaxed in [10] and in this paper at the end of Section 5. Note as well that Assumption
(A1.2) allows for one nonrandom coefficient in the original scale and that when there are more than
two, one should proceed as in Section 5.2 in [10] with the estimator developed in this paper.

In this paper, we show that the estimator in [10] can be written as a plug-in of a linear needlet
estimator. Needlets are a class of linear combinations of spherical harmonics which form a tight
frame of localized functions on spheres (see [25]). Hard-thresholding of series estimators based
on needlets have been successfully used in statistics for estimation of functions defined on spheres
(see [2] for densities, [24] for regression functions, and [17, 18, 19] for some inverse problems) or
compact manifolds (see [15]). This paper proves lower bounds on the minimax risk when the degree
of integrability in the loss - specified by the statistician - can differ from the degree of integrability
of the Besov body containing the unknown fβ , giving rise to sparse and dense regimes. The lower
bounds correspond, up to logarithmic factors, to the upper bounds in [10] over Sobolev ellipsoïds
and matching degrees of integrability. This paper proposes to replace the linear needlet estimator
in [10] by a nonlinear estimator based on hard-thresholding with data-driven thresholds and use
the same plug-in strategy as in [10]. The upper bounds on the risk of the estimator also correspond
to the lower bounds up to a logarithmic factor, but over all Besov bodies, including nonmatching
degrees of integrability. Both the upper and lower bounds are also given for the sup-norm loss.
The data-driven thresholds are similar in spirit to [5] for density estimation using the Dantzig
selector (see also [6, 24] for other local thresholding procedures over the sphere), they are based
on sharp concentration inequalities and make the implementation of the estimator feasible as it is
independent of features of the unknown density. Proofs are given in the appendix.

2 Preliminaries
We use the notation x ∧ y and x ∨ y for the minimum and the maximum between x and y. We
write x . y when there exists c such that x ≤ cy, x & y when there exists c such that x ≥ cy, and
x ' y when x . y and x & y. We denote by |A| and 1A the cardinal and indicator of the set A, by
N the nonnegative integers, by N∗ the positive integers, by a.e. almost every, and by a.s. almost
surely. We denote for 1 ≤ p ≤ ∞ by ‖ · ‖`p the `p-norm of a vector, by ‖ · ‖p the usual norm on
the space Lp(Sd−1) of p integrable real-valued functions with respect to the spherical measure σ.
We write Lpodd(Sd−1) (resp. Lpeven(Sd−1)) the closure in Lp(Sd−1) of continuous functions on Sd−1

which are odd (i.e., for every x ∈ Sd−1, f(−x) = −f(x)) (resp. even). Every f ∈ Lp(Sd−1) can be
uniquely decomposed as the sum of an odd and even function f− and f+ in Lp(Sd−1). The space
L2(Sd−1) is a Hilbert space with the scalar product 〈 , 〉 derived from the norm, there f− and f+

are orthogonal. D is the set of densities and, as it will become clear after Proposition 5, ν(d) = d/2
is the degree of ill-posedness of the inverse problem.
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2.1 Harmonic analysis
The basic element is the orthogonal decomposition L2(Sd−1) =

⊕
k∈NH

k,d, where Hk,d are the
eigenspaces of the Laplacian ∆ on Sd−1, corresponding to the eigenvalues −ζk,d, given by ζk,d

def=
k(k + d − 2), of dimension L(k, d) def= (2k + d − 2)(k + d − 2)!/(k!(d − 2)!(k + d − 2)). The space
Hk,d is spanned by an orthonormal basis (hk,l)L(k,d)

l=1 and H0,d by 1. We also have L2
odd(Sd−1) =⊕

p∈NH
2p+1,d and L2

even(Sd−1) =
⊕

p∈NH
2p,d. The projector Lk,d onto Hk,d is the operator with

kernel

Lk,d(x, y) =
L(k,d)∑
l=1

hk,l(x)hk,l(y) = L(k, d)
σ(Sd−1)Pµ(d)

k (1)
P
µ(d)
k

(
x>y

)
, (5)

where µ(d) = (d−1)/2, the surface of Sd−1 is σ(Sd−1) = 2πd/2/Γ(d/2), and Cµk are the Gegenbauer
polynomials. The Gegenbauer polynomials, defined for µ > −1/2, are orthogonal in the space of
square integrable functions on [−1, 1] with measure (1−t2)µ−1/2dt. We have Pµ0 (t) = 1, Pµ1 (t) = 2µt
for µ 6= 0, P 0

1 (t) = 2t, and for every k ∈ N

(k + 2)Pµk+2(t) = 2(µ+ k + 1)tPµk+1(t)− (2µ+ k)Pµk (t). (6)

Clearly, for f ∈ L2(Sd−1), we have f =
∑∞
k=0 Lk,df and, due to (5),

∀x ∈ Sd−1, ‖Lk,d(x, ·)‖22 =
L(k,d)∑
l=1
|hk,l(x)|2 = L(k, d)

σ(Sd−1) . (7)

Powers (−∆)s f for s ∈ R and f in a Banach space E1 are defined in a Banach space E2 when
Lk,df is defined in E2 and (−∆)s f def=

∑∞
k=0 ζ

s
k,dLk,df converges in E2. The best approximation in

Lr(Sd−1) of a function f by harmonics of degree less or equal to m is

Em(f)r = inf
P∈
⊕m

k=0
Hk,d
‖f − P‖r .

Definition 3 For s > 0 and 1 ≤ r ≤ ∞, f belongs to the Sobolev space Ws
r(Sd−1) if

‖f‖r,s = ‖f‖r +
∥∥∥(−∆)s/2 f

∥∥∥
r
<∞.

We denote by Ws
r odd(Sd−1) the restriction of Ws

r(Sd−1) to odd functions.

Definition 4 For s > 0, 1 ≤ r ≤ ∞, and 0 < q ≤ ∞, f belongs to the Besov space Bsr,q(Sd−1) if

‖f‖ABsr,q = ‖f‖r +
∥∥∥(2jsE2j (f)r

)
j∈N

∥∥∥
`q
<∞.

2.2 The operator
Proposition 5 The operator K satisfies the following properties:

(P1.1 ) For every f ∈ L1(Sd−1), Kf = K(f−),
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(P1.2 ) If Kf = Kg with f, g ∈ L1
odd(Sd−1) then g = f ,

(P1.3 ) For every 1 ≤ r ≤ ∞,

Wν(d)+|1/r−1/2|(d−2)
r odd (Sd−1) ⊆ K(Lrodd(Sd−1)) ⊆Wν(d)−|1/r−1/2|(d−2)

r odd (Sd−1),

where the exponents ν(d)± |1/r − 1/2|(d− 2) cannot be improved,

(P1.4 ) For every 1 ≤ r ≤ ∞, there exists B(d, r) such that

∀K ∈ N, ∀P ∈
K⊕
k=0
k odd

Hk,d, ‖K−1P‖r ≤ B(d, r)Kν(d)‖P‖r. (8)

Moreover, K is a self-adjoint and compact operator on L2(Sd−1) with null space L2
even(Sd−1), nonzero

eigenvalues (λ2p+1,d)p∈N corresponding to the eigenspaces H2p+1,d for p ∈ N

λ1,d = 2|Sd−2|
d− 1 , ∀p ∈ N∗ λ2p+1,d = 2(−1)p|Sd−2|1 · 3 · · · (2p− 1)

(d− 1)(d+ 1) · · · (d+ 2p− 1) .

For every d ∈ N \ {1}, for every p ∈ N, there exists cλ(d), Cλ(d) > 0 such that

c−1
λ (d)p−ν(d) ≤ |λ2p+1,d| ≤ Cλ(d)p−ν(d). (9)

K is a homeomorphism between L2
odd(Sd−1) and Wν(d)

2 odd(Sd−1).

The fact that ν(d) is the degree of ill-posedness of the inverse problem follows from (P1.4) and what
follows, in particular (9).

Proposition 5 implies that every R ∈Wν(d)
2 odd(Sd−1) has a unique inverse given by

K−1 (R) =
∑
k odd

1
λk,d

Lk,d (R) =
∑
k odd

1
λk,d

L(k,d)∑
l=1
〈R, hk,l〉hk,l. (10)

2.3 Needlets
Smoothed projection operators (see [10]) have good approximation properties in all Lp(Sd−1) spaces
and are uniformly bounded from Lp(Sd−1) to Lp(Sd−1). One such operator, the delayed means, is
the integral operator with kernel

Ka,J(x, y) def=
∞∑
k=0

a

(
k

2J

)
Lk,d(x, y), (11)

where J is an integer, a is a C∞ and decreasing function on [0,∞) supported on [0, 2] such that,
for every 0 ≤ t ≤ 2, 0 ≤ a(t) ≤ 1 and, for every 0 ≤ t ≤ 1, a(t) = 1. The delayed means operator
exhibits nearly exponential localization (see Theorem 2.2 in [25]) and is a building block for the
construction of needlets.
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Define b such that b2(t) = a (t)− a(2t) for t ≥ 0. It is nonzero only when 1/2 ≤ t ≤ 2, satisfies
b2(t) + b2(2t) = 1 for 1/2 ≤ t ≤ 1 and thus for every t ≥ 1,

∑∞
j=0 b

2 ( t
2j
)

= 1, also b2(t) = a(t) for
1 ≤ t ≤ 2. Take a such that b is bounded away from 0 on 3/5 ≤ t ≤ 5/3.

The second ingredient for the construction of needlets is a quadrature formula (Corollary 2.9 of
[25]) with positive weights

(
ω(j, ξ)2)

ξ∈Ξj
and nodes ξ ∈ Ξj which integrates functions in

⊕2j
k=0H

k,d

and satisfy, for a constant CΞ which depends on d,

∀j ∈ N, ∀ξ ∈ Ξj , C−1
Ξ 2j(d−1) ≤ |Ξj | ≤ CΞ2j(d−1)

C−1
Ξ 2−j(d−1)/2 ≤ ω(j, ξ) ≤ CΞ2−j(d−1)/2.

Needlets are defined as

ψj,ξ(x) def= ω(j, ξ)
∞∑
k=0

b

(
k

2j−1

)
Lk,d(ξ, x) if j ∈ N, ξ ∈ Ξj , (12)

ψ0,ξ(x) def= L0,d(ξ, x). (13)

For j = 0, ψ0,ξ(x) is constant and Ξ0 is a singleton.
The Lp-norms of the needlets satisfy, for a constant Cp that can depend on d,

∀j ∈ N, ∀ξ ∈ Ξj , C−1
p 2j(d−1)(1/2−1/p) ≤ ‖ψj,ξ‖p ≤ Cp2j(d−1)(1/2−1/p). (14)

If f ∈ Lp(Sd−1) for 1 ≤ p ≤ ∞, then f =
∑∞
j=0

∑
ξ∈Ξj 〈f, ψj,ξ〉ψj,ξ. The needlets form a tight

frame, with unitary tightness constant, this means that for f ∈ L2(Sd−1)

‖f‖22 =
∞∑
j=0

∑
ξ∈Ξj

|〈f, ψj,ξ〉|2 .

Needlets do not form a basis and there is redundancy. Lemma 6 (see [2]) relates Lp(Sd−1) norms
at level j to `p norms of needlet coefficients. Constants may depend on d.

Lemma 6 (i) For every 1 ≤ p ≤ ∞, there exists a constant C ′p such that for every j ∈ N and
(βξ)ξ∈Ξj ∈ RΞj ∥∥∥∥∥∥

∑
ξ∈Ξj

βξψj,ξ

∥∥∥∥∥∥
p

≤ C ′p2j(d−1)(1/2−1/p)
∥∥∥(βξ)ξ∈Ξj

∥∥∥
`p
, (15)

(ii) There exists constants cA and cp,A and sets Aj ⊂ Ξj with |Aj | ≥ cA2j(d−1) for j ∈ N such
that for every 1 ≤ p ≤ ∞, j ∈ N, and (βξ)ξ∈Aj ∈ RAj ,∥∥∥∥∥∥

∑
ξ∈Aj

βξψj,ξ

∥∥∥∥∥∥
p

≥ cp,A2j(d−1)(1/2−1/p)
∥∥∥(βξ)ξ∈Aj

∥∥∥
`p
, (16)

(iii) For every 1 ≤ p ≤ ∞, there exists a constant C ′′p such that for every j ∈ N∑
ξ∈Ξj

|〈f, ψj,ξ〉|p
1/p

2j(d−1)(1/2−1/p) ≤ C ′′p ‖f‖p. (17)
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Needlets are such that (see [25]), for all function a in the definition of the smoothed projection
operators, the norm ‖·‖ABsr,q defining the Besov spaces is equivalent to

‖f‖Bsr,q =
∥∥∥∥(2j(s+(d−1)(1/2−1/r))

∥∥∥(〈f, ψj,ξ〉)ξ∈Ξj

∥∥∥
`r

)
j∈N

∥∥∥∥
`q
.

The ball of radius M for this norm is denoted by Bsr,q(M).
Recall the following consequence of the proof of the continuous embeddings in [2].

Lemma 7 (i) If p ≤ r ≤ ∞, then we have Bsr,q(M) ⊆ Bsp,q(C
1/p−1/r
Ξ M),

(ii) If s > (d− 1)(1/r − 1/p) and r ≤ p ≤ ∞, then we have Bsr,q(M) ⊆ Bs−(d−1)(1/r−1/p)
p,q (M),

(iii) If f ∈ Bsr,q(M) and (βj,ξ)ξ∈Ξj ,j∈N are its needlet coefficients, then there exists (Dj)j∈N ∈ RN

such that ‖(Dj)j∈N‖`q ≤M and

∀z ≥ 1, ∀j ∈ N,
∑
ξ∈Ξj

|βj,ξ|z ≤ C1−(z∧r)/r
Ξ Dz

j 2−jz(s+(d−1)(1/2−1/(z∧r))). (18)

Finally recall that, when f ∈ Bsr,q with s > (d− 1)/r, then f is continuous.

3 Identification of fβ

Let us present the arguments for the identification of fβ . Proposition 5 (P1.1) implies that Kfβ =
Kf−β is odd. Thus under (A2.2) we can define the odd function R as

R(x) =
{

E[Y |X = x] for a.e. x ∈ H+

−E[Y |X = −x] for a.e. x ∈ −H+ (19)

and we have, for a.e. x ∈ Sd−1, R(x) = Kf−β (x). Uniqueness of f−β follows from (P1.2). Using, for
a.e. x ∈ Sd−1 fβ(x) ≥ 0 and f−β (x) = (fβ(x) − fβ(−x))/2, and condition (A2.1), yields that, for
a.e. x ∈ Sd−1, we have

fβ(x) = 2f−β (x)1f−
β

(x)>0. (20)

In this paper we normalize the vectors of random coefficients and covariates to have unit norm.
Indeed, since only the sign of the net utility (2) matters for choosing between 1 and -1 and the index
is linear, a scale normalization of (ε1− ε−1, γ

>) is in order. Let us compare with the normalization
in [9]. It is based on the following assumption, which is stronger than the condition in [13], that
the support of β is a subset of some (unknown) hemisphere, which itself is stronger than (A2.1).

(H): a.s. there exists j ∈ {1, . . . , d}, the coordinate γj of γ has a sign (excluding 0).

Assumption (H) is likely to hold when Z1j and Z−1j are cost factors, since consumers dislike an
increase in cost. If (H) holds we can identify for which index j γj has a sign since it amounts to the
finding for which coordinate zj of z zj → E[Y |Z1−Z−1 = z] is (globally) monotone. We can identify
the sign of the coefficient by assessing whether the function is increasing (positive) or decreasing
(negative). If γj > 0 then we normalize the vector of coefficients by dividing by γj . If γj < 0 we
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change the sign of Z1j − Z−1j to make it positive. A potential issue with this normalization is
that if βj can take small values then estimators could differ in finite samples depending on which
coefficient is used for normalization. Also, monotonicity in one regressor of the conditional mean
function implies a type of weak monotonicity (in the sense used to identify treatment effects, see,
e.g., [9]) at the individual level as we now explain. Assuming that γj > 0, z1i − z−1i = z for
all i = 1, . . . , n, and that we change zj to z′j > zj while leaving unchanged (ε1i − ε−1i, γ

>
i ) (the

characteristics of the individuals) and the other components of z, then some people do not change
their decision and some choose alternative 1 while originally they had chosen alternative -1, but
no one changes from alternative 1 to alternative -1. Monotonicity of the conditional mean function
implies monotonicity for every individual. This is sometimes not a realistic model of individuals
making choices. Clearly (A2.1) allows both individuals to switch from 1 to -1 and individuals to
switch from -1 to 1 after similar changes in z (or x). On the other hand, if (H) holds then (A2.2)
can be relaxed and we can consider an index which is nonlinear in X (cf. [9]).

4 Lower bounds
We take 1 ≤ p, r ≤ ∞, 0 ≤ q ≤ ∞, z ≥ 1, and s > 0, and consider the minimax risk

R∗n
def= inf

f̂β

sup
fβ∈Bsr,q(M)∩D

E
∥∥∥f̂β − fβ∥∥∥z

p
, (21)

where the infimum is over all estimators based on the i.i.d. sample of size n. The degree of
integrability r in the smoothness class Bsr,q(M) is allowed to differ from the degree of integrability
p in the loss function. We distinguish two zones for s, r, q, d, and p:
(1) the dense zone where s ≥ p (ν(d) + (d− 1)/2) (1/r − 1/p) with the restriction q ≤ r if s =
p (ν(d) + (d− 1)/2) (1/r − 1/p), where the rate involves

µdense(d, p, r, s) def= s/(s+ ν(d) + (d− 1)/2),

(2) the sparse zone where (d− 1)/r < s < p (ν(d) + (d− 1)/2) (1/r − 1/p), where the rate involves

µsparse(d, p, r, s) def= (s− (d− 1)(1/r − 1/p))/(s+ ν(d)− (d− 1)(1/r − 1/2)).

The terminology dense and sparse is justified by the following heuristic. The proofs of the lower
bounds replace the infimum in (21) by a minimum over a set of functions which are difficult to
estimate. The functions used to prove the lower bound in the dense zone are functions which could
have many nonzero needlet coefficients for ξ ∈ Aj (see Lemma 6) and a well-chosen j. Those used
to prove the lower bound in the sparse zone only have two nonzeros. In the dense zone, the rate is
the same as for the matched case when r = p studied in [10].
Theorem 8 (i) In the dense zone we have

R∗n ≥ cdense(d,M, p, r, s, z)
(

1√
nAX

)µdense(d,p,r,s)z
, (22)

(ii) In the sparse zone we have

R∗n ≥ csparse(d,M, p, r, s, z)

√ ln(nAX)
nAX

µsparse(d,p,r,s)z

, (23)
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where the constants cdense and csparse depend on d, M , p, r, s and z.

The values of µdense and µsparse depend on d through the dimension of Sd−1. This is the usual
curse of dimensionality in nonparametric regression or density estimation. They also depend on d
through the degree of ill-posedness ν(d) = d/2 of the inverse problem.

5 Adaptive estimation by needlet thresholding

Consider the estimator f̂β = 2f̂−β 1
f̂−
β
>0

, where f̂−β is an estimator of f−β .

5.1 Smoothed projections and linear needlet estimators
A smoothed projection estimator of f−β with kernel (11), window a, and J ∈ N, is given for x ∈ Sd−1

by

f̂−β
a,J

(x) =
∑
k odd

a
(
k
2J
)

λk,d
L̂k,dR(x),

with the unbiased estimator of Lk,dR(x) (see Lemma 10): L̂k,dR(x) = 0 if k is even, else

L̂k,dR(x) = 2
n

n∑
i=1

yiLk,d(xi, x)
fX(xi)

.

Alternatively, we can estimate f−β using the needlet frame with smoothing window a. The coeffi-
cients βaj,ξ = 〈f−β , ψj,ξ〉 are such that

βaj,ξ = ω(j, ξ)
∑
k odd

b

(
k

2j−1

)
〈f−β , Lk,d(ξ, ·)〉

= ω(j, ξ)
∑
k odd

b
(

k
2j−1

)
λk,d

〈Lk,dR,Lk,d(ξ, ·)〉

= ω(j, ξ)
∑
k odd

2j−2<k<2j

b
(

k
2j−1

)
λk,d

Lk,dR(ξ).

Using that a
(
k
2j
)

= 1 for k = 0, . . . , 2j and denoting by f−β
a,J = E

[
f̂−β

a,J
]
, we obtain that, for

1 ≤ j ≤ J , βaj,ξ =
〈
f−β

a,J
, ψj,ξ

〉
, which can be estimated without bias by

β̂aj,ξ = ω(j, ξ)
∑
k odd

b
(

k
2j−1

)
λk,d

L̂k,dR(ξ) (41)=
〈
f̂−β

a,J

, ψj,ξ

〉
.

Moreover, for x ∈ Sd−1,

β̂aj,ξψj,ξ(x) = ω(j, ξ)2

(∑
k odd

b
(

k
2j−1

)
λk,d

L̂k,dR(ξ)
)(∑

k

b

(
k

2j−1

)
Lk,d(ξ, x)

)

10



belongs to
⊕2j

k=0H
k,d, thus by the quadrature formula∑

ξ∈Ξj

β̂aj,ξψj,ξ(x) =
∑
k odd

b2
(

k
2j−1

)
λk,d

L̂k,dR(x).

This yields
∑J
j=0

∑
ξ∈Ξj β̂

a
j,ξψj,ξ = f̂−β

a,J−1
, indeed

J∑
j=0

∑
ξ∈Ξj

β̂aj,ξψj,ξ =
J∑
j=1

∑
ξ∈Ξj

β̂aj,ξψj,ξ (due to (41) and because f̂−β
a,J

is odd)

(42)=
∑

1≤k<2J−1

k odd

1
λk,d

L̂k,dR+
∑

2J−1≤k≤2J
k odd

b2
(

k
2J−1

)
λk,d

L̂k,dR

(43)=
∑

1≤k<2J−1

k odd

1
λk,d

L̂k,dR+
∑

2J−1≤k≤2J
k odd

a
(

k
2J−1

)
λk,d

L̂k,dR,

where (42) uses that for 1/2 ≤ t ≤ 1, b2(t) + b2(2t) = 1, while (43) that b2(t) = a (t) for 1 ≤ t ≤ 2.
Thus, the smoothed projection and needlet estimators coincide.

5.2 Nonlinear estimator with data-driven thresholds
Consider, for γ ≥ 1 and ρTj,ξ,γ (x) = x1|x|>Tj,ξ,γ , the nonlinear estimator of f−β :

f̂−β
a,ρ

=
J∑
j=0

∑
ξ∈Ξj

ρTj,ξ,γ

(
β̂aj,ξ

)
ψj,ξ.

It is classical that the optimal choice of J for linear estimators depends on the parameters of
the smoothness ellipsoid. In contrast, using a thresholded estimator allows to take J large and
independent of the parameters. Thresholding induces additional bias compared to linear estimators
which allows to reduce the variance incurred by taking J large.

The level of thresholding should depend on the size of the coefficients relative to their variance.
This variance is proportional to 1/

√
n so that the level of the threshold does not have to depend

on the smoothness of the unknown function. Instead of using a conservative upper bound on their
variance, as is usually the case in estimation using wavelets, we use data-driven levels of thresholding.
These provide better estimators in small samples. Lemma 14 gives a theoretical guarantee that the
performance is almost as good as that of an oracle which would know the variance of the estimators
of the coefficients. The data-driven thresholding rule uses that β̂aj,ξ = 1

n

∑n
i=1Gj,ξ(xi, yi) with

Gj,ξ(xi, yi)
def= 2
n

n∑
i=1

ω(j, ξ) yi
fX(xi)

∑
k odd

b
(

k
2j−1

)
λk,d

Lk,d(xi, ξ). (24)

Define the estimator of the variance by

σ̂j,ξ
def=

√√√√ 1
n(n− 1)

n∑
i=2

i−1∑
k=1

(Gj,ξ(xi, yi)−Gj,ξ(xk, yk))2
, (25)
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tn =
√

logn/n, and the data-driven thresholds

Tj,ξ,γ
def= 2

√
2γtnσ̂j,ξ + 28

3 Mj,ξ
γ logn
n− 1 ,

where Mj,ξ is an upper bound on the sup-norm over H+ × {±1} of Gj,ξ(x, y) − E [Gj,ξ(X,Y )] =
Gj,ξ(x, y)− βaj,ξ (e.g., 2‖Gj,ξ‖∞). For example, using (14) and Proposition 5, we get

2‖Gj,ξ‖∞ ≤ 2
∥∥∥K−1

(
ψ−j,ξ

)∥∥∥
∞
BX ≤ 2C∞B(d,∞)2j(ν(d)+(d−1)/2)BX

def= Mj . (26)

The second term in Tj,ξ,γ controls the error in estimating the threshold.

Theorem 9 For J such that 2J(ν(d)+(d−1)/2)B
1/2
X ' t−1

n , M > 0, and s > (d− 1)/r,

(i) If z > 1 and γ > z/2 + 1, we have

sup
fβ∈Bsr,q(M)∩D

E
∥∥∥f̂βa,ρ − fβ∥∥∥z

∞
≤ c̃(d,∞, r, s, γ)(logn)z−1Mr (BXtn)µsparse(d,∞,r,s)z

. (27)

(ii) If p <∞ and γ > p/2, we have

sup
fβ∈Bsr,q(M)∩D

E
∥∥∥f̂βa,ρ − fβ∥∥∥p

p
≤ c̃(d, p, r, s, γ)(logn)p−1M$ (BXtn)µ(d,p,r,s)p

, (28)

where µ(d, p, r, s) = µdense(d, p, r, s) and $ = r in the dense zone, while µ(d, p, r, s) =
µsparse(d, p, r, s) and $ > p ν(d)+(d−1)(1/2−1/p)

s+ν(d)−(d−1)(1/r−1/2) is arbitrary in the sparse zone, and c̃(d, p, r, s, γ)
is a constant which depends on d, p, r, s, and γ.

The upper bounds in Theorem 9 match the lower bound in Theorem 8 up to logarithmic factors.
Hence, the proposed estimator is minimax adaptive (up to the log factors).

6 Simulation study
We study the performance of the estimator when d = 3, n = 3000, 5000, 10000, and X is uniform
on H+. We use of the Von Mises-Fisher distribution vMF(µ, κ) with density

f(β;µ, κ) = κ

4π sinh κ exp
(
κµ>β

)
with respect to σ. We take β = (β̃1, β̃2, |β̃3|) in the cases:

• β̃ follows a vMF(µ, κ) distribution where µ = (0 0 1)> and κ = 10.

• β̃ follows a mixture λvMF(µ1, κ) + (1 − λ)vMF(µ2, κ), where µ1 = (2−1/2 0 2−1/2)>, µ2 =
(−2−1/2 0 2−1/2)>, κ = 10 and λ = 0.3.

12



We use the cubature defined in spherical coordinates as a product of the Gauss-Legendre quadrature
with m nodes and trapezoid rule with 2m subdivisions (see [1]). The resulting cubature has 2m2

nodes and integrates exactly all polynomials on the sphere up to degree 2m− 1. We take the same
function a as in [2].

The threshold is driven by the parameter γ. The choice of γ slightly depends on the targeted
norm. Here we focus on a simultaneous control of the L1, xL2, xL4 and L∞ norm. According to
our analysis, γ should be chosen stricly larger than 4. We have nevertheless chosen to use γ = 4
which turns out to be sufficient in practice.

Figure 1 displays the distribution of estimates based on a Monte-Carlo experiments with 100
replications and n = 3000. We plot the Lambert equal-area projection on the disk which is defined
(see [22])

(sin θ cosφ, sin θ sinφ, cos θ)> 7→ 2 sin
(
θ

2

)
(cosφ, sinφ)>.

Our main contribution is a control of the estimation error for all Lp norm. Table 1 displays the
expected risk, approximated using Monte-Carlo and 100 replications, for some Lp norms. More pre-

cisely, we have approximated the following renormalized quantities:
(
E
[∥∥∥f̂β − fβ∥∥∥p

p

]
/‖fβ‖pp

)1/p

for p = {1, 2, 4} and E
[∥∥∥f̂β − fβ∥∥∥

∞

]
/‖fβ‖∞. Figure 2 displays the decay of those error with re-

spect to n in a logarithmic scales. As expected, we observe a simultaneous control over all norm
and the error decays follows the power law given by the upper bounds. The results are similar to
the one obtained in [10] except that our threshold does not depend on the unknown regularity of
the function whereas the level used in [10] depends on it.

Unimodal Mixture
PPPPPPPPRisk

n 1000 2000 3000 5000 10000 1000 2000 3000 5000 10000

E
[∥∥f̂β − fβ

∥∥
1

]
/‖fβ‖1 0.89 0.64 0.53 0.43 0.32 0.92 0.68 0.57 0.46 0.34(

E
[∥∥f̂β − fβ

∥∥2

2

]
/‖fβ‖2

2

)1/2
0.6 0.43 0.35 0.29 0.21 0.821 0.6 0.5 0.4 0.29(

E
[∥∥f̂β − fβ

∥∥4

4

]
/‖fβ‖4

4

)1/4
0.49 0.36 0.29 0.24 0.17 0.8 0.58 0.48 0.38 0.27

E
[∥∥f̂β − fβ

∥∥
∞

]
/‖fβ‖∞ 0.42 0.32 0.26 0.21 0.17 0.86 0.6 0.51 0.39 0.29

Table 1: Risk.

7 Appendix
7.1 A preliminary lemma
Lemma 10 The following equality holds for every g ∈ L2(Sd−1),

〈R, g〉 = 2E
[
Y g−(X)
fX(X)

]
.
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Figure 1: True density and distribution of the estimates.
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Figure 2: Decay of the risk with n in logarithmic scales.

Proof. The result is based on the following

〈R, g〉 = 〈R, g−〉 (because R is odd)

= 2
∫
H+

R(x)g−(x)
fX(x) fX(x)dσ(x)

= 2E
[
R(X)g−(X)
fX(X)

]
= 2E

[
E[Y |X]g−(X)

fX(X)

]
. �

7.2 Proof of Proposition 5
The operator K is related to the Hemispherical transform (see [10, 26]) defined for f ∈ L1(Sd−1)
and a.e. x ∈ Sd−1 by

H(f)(x) def=
∫
Sd−1

1x>y>0f(y)dσ(y),

through
Kf = 2H(f)−

∫
Sd−1

f(y)dσ(y).

(P1.1) is a consequence of the fact that y → x>y ∈ L∞odd(Sd−1). (P1.2) follows from Theorem 2
(ii), and (P1.3) follows from Theorem C in [26]. The second part of the proposition together with
(P1.4) are consequences of the properties of H detailed in [10]. The inequalities (9) correspond to
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Lemma A.2. Note however that there is a typo in the proof and we should read 1.3 . . . (2p − 1) �
p−1/22.4 . . . (2p) but the result still holds.

7.3 Proof of Theorem 8
Start by noting that for every j ∈ N and ξ ∈ Ξj ,∫

Sd−1
ψj,ξ(x)dx = ω(j, ξ)b(0) = ω(j, ξ)(a(0)− a(0)) = 0.

This implies that the functions fm that we introduce below integrate to 1.

7.3.1 Proof of the lower bound in the dense zone

Consider the family (Pm)Mm=0, whereM ∈ N∗, of distributions of an i.i.d. sample of (Y,X) of size
n when fβ = fm and the density of X is fX . These probabilities are absolutely continuous with
respect to the product of δ1 + δ−1, where δy denotes the Dirac mass at y and σ. Take j ∈ N,
f0 = 1/σ(Sd−1), and consider the set Aj from Lemma 6 (ii). By the Varshamov-Guilbert bound
(Lemma 2.9 in [27]) there exists Ω ⊆ {0, 1}Aj containing (0, . . . , 0) such that |Ω| = 2|Aj |/8 and
∀(ω1, ω2) ∈ Ω2, ‖ω1 − ω2‖`1 ≥ |Aj |/8. Enumerate the elements of Ω from 0 (corresponding to the
zero vector) toM def= |Ω| − 1 and define

fm
def= f0 + γ

∑
ξ∈Aj

ωξψj,ξ

when (ωξ)ξ∈Aj is the mth element of Ω and γ = cC
−1/r
Ξ M2−j(s+(d−1)/2) for 0 < c < 1 such that all

fm are nonnegative. We now use the following result (see Theorem 2.5 in [27]).

Lemma 11 If for 0 < α < 1/8 we have:

(i) fm ∈ Bsr,q(M) ∩ D for m = 0, . . . ,M,

(ii) ∀ 0 ≤ m < l ≤M, ‖fm − fl‖p ≥ 2h > 0,

(iii) 1
M
∑M
m=1K(Pm, P0) ≤ α ln(M),

then for every z ≥ 1

inf
f̂β

sup
fβ∈Bsr,q(M)∩D

E
∥∥∥f̂β − fβ∥∥∥z

p
≥ hz

√
M

1 +
√
M

(
1− 2α−

√
2α

ln(M)

)
. (29)

Start by checking (i) in Lemma 11. It is enough to show that fm ∈ Bsr,q(M). Indeed, for r ≥ 1 and

ω ∈ Ω, we have
∥∥∥(ωξ)ξ∈Aj

∥∥∥
`r
≤
∥∥∥(ωξ)ξ∈Aj

∥∥∥1/r

`1
≤ C1/r

Ξ 2j(d−1)/r, we obtain

γ2j(s+(d−1)(1/2−1/r))
∥∥∥(ωξ)ξ∈Aj

∥∥∥
`r
≤ γC1/r

Ξ 2j(s+(d−1)/2) ≤M.

Lemma 6 (ii) now yields that for every 1 ≤ p ≤ ∞ and 0 ≤ m < l ≤M

‖fm − fl‖p ≥ γcp,A2j(d−1)(1/2−1/p)
(cA

8 2j(d−1)
)1/p

= 2h.
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Thus (ii) in Lemma 11 follows with h = cp,A
(
cA
8
)1/p

cC
−1/r
Ξ M2−js−1.

By independence, the Kullback-Leibler divergence between Pm and P0 is given by

K(Pm, P0) = nE
[
H(fm)(X) ln

(
H(fm)(X)
H(f0)(X)

)
+ (1−H(fm)(X)) ln

(
1−H(fm)(X)
1−H(f0)(X)

)]
.

Using that, for x > 0, ln(x) ≤ x− 1, we obtain

K(Pm, P0) ≤ nE
[

H(fm − f0)(X)2

H(f0)(X) (1−H(f0)(X))

]
,

and thus

K(Pm, P0) ≤ 4nAX ‖H(fm − f0)‖22
≤ 4nAXλ2

2j+1,d ‖fm − f0‖22 ,

where the last display comes from the fact that fm − f0 ∈
⊕

2j+1≤k≤2j+2−1H
k,d. From (9) we get

K(Pm, P0) ≤ 4Cλ(d)2nAX2−2jν(d) ‖fm − f0‖22 ,

which yields using Lemma 6 (i)

K(Pm, P0) ≤ (2Cλ(d)C ′2γ)2
nAX2−2jν(d)

∥∥∥(ωξ)ξ∈Aj
∥∥∥2

`2

≤ (2Cλ(d)C ′2γ)2
nAX2−2jν(d)

∥∥∥(ωξ)ξ∈Aj
∥∥∥
`1

≤ (2Cλ(d)C ′2γ)2
CΞnAX2j(d−1−2ν(d))

≤ (2Cλ(d)C ′2cM)2
C

1−2/r
Ξ nAX2−2j(s+ν(d)).

Condition (iii) of Lemma 11 is satisfied once

25 (Cλ(d)C ′2cM)2

ln(2) C
−2/r
Ξ nAX2−2j(s+ν(d)+(d−1)/2) ≤ α < 1

8 . (30)

For α < 1/8, the lower bound (29) yields that

inf
f̂β

sup
fβ∈Bsr,q(M)

E
∥∥∥f̂β − fβ∥∥∥z

p
≥
(
cp,A

(cA
8

)1/p
cC
−1/r
Ξ M2−js−1

)z (3
4 −

1
2
√

ln(M)

)

≥ 1
2

(
cp,A

(cA
8

)1/p
cC
−1/r
Ξ

M

2

)z
2−jsz,

where the inequality leading to the second display holds when ln(M) ≥ 4, for example for j(d−1) ≥
ln(5/cA ln(2))/ ln(2). Now (30) is satisfied for

j ≥ j0
def= 1 +

ln
(

28 (Cλ(d)C ′2cM)2
C
−2/r
Ξ nAX/ ln(2)

)
2 ln(2)(s+ ν(d) + (d− 1)/2) ,
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which implies the lower bound

inf
f̂β

sup
fβ∈Bsr,q(M)

E
∥∥∥f̂β − fβ∥∥∥z

p

≥ 1
2

(
cp,A

(cA
8

)1/p
cC
−1/r
Ξ M2−s−1

)z (28 (Cλ(d)C ′2cM)2
C
−2/r
Ξ nAX

ln(2)

)−µdense(d,p,r,s)z/2

.

7.3.2 Proof of the lower bound in the sparse zone

In this proof we consider asymptotic orders for simplicity. The various constants can be obtained
like in Section 7.3.1. Consider the hypotheses

fm = 1
σ(Sd−1) + γψj,ξm ,

where ξm ∈ Aj and |γ| . 2−j(d−1)/2 to ensure the functions are positive. The constant is adjusted so
that for one of the fm that we denote f0, ∀x ∈ H+,

∣∣H(f−0 )(x)
∣∣ ≤ cb with cb ∈ (0, 1

2 ). The function
fm also integrate to 1. We denote byM the cardinality of Aj (M' 2j(d−1)), Pm the distributions
of an i.i.d. sample of (Y,X) of size n when fβ = fm and for a given fX , and Λ(Pm, P0) the likelihood
ratio. Recall that K(Pm, P0) = EPm [Λ(Pm, P0)]. We make use of the following Lemma from [20].

Lemma 12 If for π0 > 0 andM∈ N∗ the following three condition hold

(i) fm ∈ Bsr,q(M) ∩ D for m = 1, . . . ,M,

(ii) ∀m 6= l, ‖fm − fl‖p ≥ 2h > 0,

(iii) ∀m = 1, . . . ,M, Λ(P0, Pm) = exp(zmn −vmn ), where zmn are random variables and vmn constants
such that P(zmn > 0) ≥ π0 and exp

(
supm=1,...,M vmn

)
≤M,

then
∀z ≥ 1, inf

f̂β

sup
fβ∈Bsr,q(M)∩D

E
∥∥∥f̂β − fβ∥∥∥z

p
≥ h−zπ0

2 .

Item (i) is satisfied when |γ| ≤ M2−j(s−(d−1)(1/r−1/2). This is more restrictive than the con-
dition to ensure positivity because we assume that s ≥ (d − 1)/r. Thus, now we take γ =
2cM2−j(s−(d−1)(1/r−1/2) for a well-chosen constant c.
The constant h in (ii) is obtained as follows, if m 6= m′,

‖fm − fm′‖p = γ‖ψj,ξm − ψj,ξm′‖p
≥ γcp,A2j(d−1)(1/2−1/p)

≥ 2cM2−j(s−(d−1)(1/r−1/p)).

Let us now consider item (iii), we obtain

Pm (log (Λ(P0, Pm)) ≥ −j(d− 1) log 2) ≥ 1− Pm (|log (Λ(P0, Pm))| ≥ j(d− 1) log 2)

≥ 1− EPm [|log (Λ(P0, Pm))|]
j(d− 1) log 2 .
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Thus, condition (iii) is satisfied when

EPm [|log (Λ(P0, Pm))|] ≤ αj(d− 1) log 2,

for α ∈ (0, 1). The same computations as in the beginning of Section 5.1 yield that we need to
impose n2−2jν(d)γ2 . j, thus

AXn2−2j(s+ν(d)−(d−1)(1/r−1/2)) . j.

The desired rate is obtained by taking

2j '
(

nAX
log (nAX)

) 1
2(s+ν(d)−(d−1)(1/r−1/2))

.

7.4 Comparison between Besov ellipsoids of a function and its odd part
Lemma 13 For 0 < s, q ≤ ∞ and 1 ≤ r ≤ ∞, there exists a constant ceq that can depend on d
such that, for every f ∈ Bsr,q, ‖f−‖Bsr,q ≤ ceq‖f‖Bsr,q .

Proof. In Definition 4 every f ∈ Bsr,q(Sd−1) has same norm as x → f(−x), thus by the triangle
inequality ‖f−‖ABsr,q ≤ ‖f‖

A
Bsr,q

. We conclude by equivalence of the norms. �

7.5 A general inequality
We make use of the constants c1,z and c2,z such that∫

R+
zτz−1e−βτdτ ≤ c1,zβ−z (31)∫

R+
zτz−1e−ατ

2
dτ ≤ c2,zα−z/2. (32)

Lemma 14 For every τ, γ, z > 1 and

T s,++
j,ξ,γ ≥ 3

√
2γtnσ̂j,ξ + 26Mj,ξ

γ logn
n− 1

def= T s,+j,ξ,γ ,

the two following inequalities hold:
when p =∞,

1
2z−1E

[∥∥∥f̂βa,ρ − fβ∥∥∥z
∞

]
≤
∥∥∥f−β a,J − f−β ∥∥∥z∞ + (J + 1)z−1C ′z∞

{
an,∞,z,J

J∑
j=0

2j(d−1)z/2

(
sup
ξ∈Ξj

∣∣βaj,ξ∣∣z 1|βaj,ξ|≤T s,++
j,ξ,γ

+ E

[
sup
ξ∈Ξj

∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z 1|βaj,ξ|>T s,++
j,ξ,γ

])

+ 4CΞ

nγ

J∑
j=0

2j(d−1)(z/2+1) sup
ξ∈Ξj

∣∣βaj,ξ∣∣z
+
(
CΞ4
nγ

)1−1/τ ( 1√
n
B

1/2
X 2Jz(ν(d)+(d−1)/2)

)z
2J(d−1)(1−1/τ)bn,∞,z,J,τ

}
,

19



where

an,∞,z,J = 1 +
(

2√
γ logn

)z (
2 +

(
log
(
CΞ2J(d−1)c2,z

))z/2)
+
(

4
γ logn

)z (
2 +

(
log
(
CΞ2J(d−1)c1,z

))z)

bn,∞,z,J,τ =

(
2
√

2C2B(d, 2)
)z (21/τ +

(
log
(
CΞ2J(d−1)c2,zτ

))z/2)
1− 2−(zν(d)+(d−1)(z/2+1−1/τ))

+
(8C∞B(d,∞)/3)z

(
21/τ +

(
log
(
CΞ2J(d−1)c1,z

))z)
1− 2−(zν(d)+(d−1)(z+1−1/τ))

(
2J(d−1)

n
BX

)z/2
;

while, when 1 ≤ p ≤ ∞,

1
2z−1E

[∥∥∥f̂βa,ρ − fβ∥∥∥z
p

]
≤
∥∥∥f−β a,J − f−β ∥∥∥z

p
+ (J + 1)z−1C ′zp C

z/(p∧z)−1
Ξ

{
an,p,z,J

J∑
j=0

2j(d−1)(z/2−z/(p∨z))
∑
ξ∈Ξj

(∣∣βaj,ξ∣∣z 1|βaj,ξ|≤T s,++
j,ξ,γ

+ E
[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z]1|βaj,ξ|>T s,++

j,ξ,γ

)

+ 4
nγ

J∑
j=0

2j(d−1)z(1/2−1/(p∨z))
∑
ξ∈Ξj

∣∣βaj,ξ∣∣z
+ 22−1/τ

nγ(1− 1
τ )CΞ

(
1√
n
B

1/2
X 2J(ν(d)+(d−1)/2)

)z
2J(d−1)(1−z/(p∨z))bn,p,z,J,τ

}
,

where

an,p,z,J = 1 + 2
(( √

2c1/z2,z√
γ logn

)z
+
(

2c1/z1,z

γ logn

)z)

bn,p,z,J,τ =

(
2c1/(zτ)

2,zτ C2B(d, 2)
)z

1− 2−(zν(d)+(d−1)(z/2+1−z/(p∨z))) +

(
4
3c

1/(zτ)
1,zτ C∞B(d,∞)

)z
1− 2−(zν(d)+(d−1)(z+1−z/(p∨z)))

(
2J(d−1)

n
BX

)z/2
.

The inequalities of Lemma 14 are similar to oracle inequalities, for a well-chosen J depending on
n (see Theorem 9), where the oracle estimates βaj,ξ if and only if the error made by estimating
this coefficient is smaller than the one made by discarding it. This oracle strategy would lead to a
quantity of the form∣∣βaj,ξ∣∣z 1|βaj,ξ|≤

(
E
[∣∣β̂a

j,ξ
−βa

j,ξ

∣∣z])1/z + E
[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z]1|βaj,ξ|>

(
E
[∣∣β̂a

j,ξ
−βa

j,ξ

∣∣z])1/z .

Proving such an oracle inequality would require to lower bound
(
E
[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z])1/z

. In the

inequalities of Lemma 14 the ideal quantity
(
E
[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z])1/z

is replaced by T s,++
j,ξ,γ , called
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quasi-oracle. The remaining terms can be made as small as we want by taking γ large enough. The
last term corresponds to the approximation error. Upper bounds of these types, uniform on Besov
ellipsoids, yield an approximation error which can be expressed in terms of the regularity of the
Besov class and is uniformly small for J large enough and allows to treat the bias/variance trade-off
in the quasi-oracle term uniformly over the ellipsoid.

7.6 Proof of Lemma 14
7.6.1 Preliminaries

Recall from the proof of Theorem 4.1 in [10] that for every 1 ≤ p ≤ ∞∥∥∥f̂βa,ρ − fβ∥∥∥
p
≤ 2

∥∥∥f̂−β a,ρ − f−β ∥∥∥
p
,

and that, for 1 ≤ z <∞, we have∥∥∥f̂−β a,ρ − f−β ∥∥∥z
p
≤ 2z−1

(∥∥∥f̂−β a,ρ − f−β a,J∥∥∥z
p

+
∥∥∥f−β a,J − f−β ∥∥∥z

p

)
. (33)

The first term corresponds to the error in the high dimensional space while the second term corre-
sponds to the approximation error. Let us start by studying the first term.
Lemma 6 (i) yields

∥∥∥f̂−β a,ρ − f−β a,J∥∥∥z
p
≤ (J + 1)z−1

J∑
j=0

∥∥∥∥∥∥
∑
ξ∈Ξj

(
ρTj,ξ,γ

(
β̂aj,ξ

)
− βaj,ξ

)
ψj,ξ

∥∥∥∥∥∥
z

p

≤ (J + 1)z−1
J∑
j=0

C ′zp 2j(d−1)z(1/2−1/p)
∥∥∥ρTj,ξ,γ (β̂aj,ξ)− βaj,ξ∥∥∥z

p
.

Thus, for p =∞, we have∥∥∥f̂−β a,ρ − f−β a,J∥∥∥z
p
≤ (J + 1)z−1

J∑
j=0

C ′z∞2j(d−1)z/2 sup
ξ∈Ξj

∣∣∣ρTj,ξ,γ (β̂aj,ξ)− βaj,ξ∣∣∣z ,
while, for p <∞, we have∥∥∥f̂−β a,ρ − f−β a,J∥∥∥z

p
≤ (J + 1)z−1C ′zp C

z/(p∧z)−1
Ξ

J∑
j=0

2j(d−1)z(1/2−1/(p∨z))
∑
ξ∈Ξj

∣∣∣ρTj,ξ,γ (β̂aj,ξ)− βaj,ξ∣∣∣z .
The last inequality is obtained by using that, when p ≥ z, we have∑

ξ∈Ξj

|bξ|p
z/p

≤
∑
ξ∈Ξj

|bξ|z ,

and by the Hölder inequality, when p ≤ z, we have∑
ξ∈Ξj

|bξ|p
z/p

≤ Cz/p−1
Ξ

∑
ξ∈Ξj

|bξ|z .
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7.6.2 Coefficientwise analysis

For the simplicity of the notations we sometimes drop the dependence on γ in the sets of indices.
We first consider the term

δj,ξ,z
def=
∣∣∣ρTj,ξ,γ (β̂aj,ξ)− βaj,ξ∣∣∣z .

By construction we have

δj,ξ,z =
∣∣βaj,ξ∣∣z 1∣∣β̂a

j,ξ

∣∣≤Tj,ξ,γ +
∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z 1∣∣β̂a

j,ξ

∣∣>Tj,ξ,γ
= max

(∣∣βaj,ξ∣∣z 1∣∣β̂a
j,ξ

∣∣≤Tj,ξ,γ , ∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z 1∣∣β̂a
j,ξ

∣∣>Tj,ξ,γ
)
.

We introduce two “phantom” random thresholds T bj,ξ,γ = Tj,ξ,γ −∆j,ξ,γ and T sj,ξ,γ = Tj,ξ,γ + ∆j,ξ,γ

for some ∆j,ξ,γ to be defined later. They are used to define big and small original needlet coefficients.
We also use T b,−j,ξ,γ for a deterministic lower bound on T bj,ξ,γ , T

s,+
j,ξ,γ and ∆+

j,ξ,γ for deterministic upper
bounds on T sj,ξ,γ and ∆j,ξ,γ . These bounds will hold with high probability. We obtain almost surely

δj,ξ,z = max
( ∣∣βaj,ξ∣∣z max

(
1∣∣β̂a

j,ξ

∣∣≤Tj,ξ,γ1|βaj,ξ|≤T sj,ξ,γ ,1
∣∣β̂a
j,ξ

∣∣≤Tj,ξ,γ1|βaj,ξ|>T sj,ξ,γ

)
,∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z max

(
1∣∣β̂a

j,ξ

∣∣>Tj,ξ,γ1|βaj,ξ|≤T bj,ξ,γ ,1
∣∣β̂a
j,ξ

∣∣>Tj,ξ,γ1|βaj,ξ|>T bj,ξ,γ

))
≤ max

( ∣∣βaj,ξ∣∣z max
(

1|βaj,ξ|≤T sj,ξ,γ ,1
∣∣β̂a
j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

)
,∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z max

(
1∣∣β̂a

j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ
,1|βaj,ξ|>T bj,ξ,γ

))
≤ max

( ∣∣βaj,ξ∣∣z max
(

1|βaj,ξ|≤T s,+j,ξ,γ
,1T s,+

j,ξ,γ
<T s

j,ξ,γ
,1∣∣β̂a

j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

)
,∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z max

(
1∣∣β̂a

j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ
,1|βaj,ξ|>T b,−j,ξ,γ ,1T b,−j,ξ,γ>T bj,ξ,γ

))
.

Sorting the terms according to the number of random terms we obtain

δj,ξ,z ≤ max
( ∣∣βaj,ξ∣∣z 1|βaj,ξ|≤T s,+j,ξ,γ

,
∣∣βaj,ξ∣∣z max

(
1T s,+

j,ξ,γ
<T s

j,ξ,γ
,1∣∣β̂a

j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

)
,∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z 1|βaj,ξ|>T b,−j,ξ,γ ,

∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z max
(

1∣∣β̂a
j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ
,1T b,−

j,ξ,γ
>T b

j,ξ,γ

))
.

7.6.3 Scalewise analysis

Defining

Mj,z
def= sup

ξ∈Ξj

∣∣∣ρTj,ξ,γ (β̂aj,ξ)− βaj,ξ∣∣∣z = sup
ξ∈Ξj

δj,ξ,z

Sj,z
def=
∑
ξ∈Ξj

∣∣∣ρTj,ξ,γ (β̂aj,ξ)− βaj,ξ∣∣∣z =
∑
ξ∈Ξj

δj,ξ,z,
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we obtain

Mj,z ≤ max
(

sup
ξ∈Ξj

∣∣βaj,ξ∣∣z 1|βaj,ξ|≤T s,+j,ξ,γ
, sup
ξ∈Ξj

∣∣βaj,ξ∣∣z max
(

1T s,+
j,ξ,γ

<T s
j,ξ,γ

,1∣∣β̂a
j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

)
,

sup
ξ∈Ξj

∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z 1|βaj,ξ|>T b,−j,ξ,γ , sup
ξ∈Ξj

∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z max
(

1T b,−
j,ξ,γ

>T b
j,ξ,γ

,1∣∣β̂a
j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

))
def= max(MS0

j,z ,M
S1
j,z ,M

B1
j,z ,M

B2
j,z )

≤MS0
j,z +MS1

j,z +MB1
j,z +MB2

j,z ;

Sj,z ≤
∑
ξ∈Ξj

∣∣βaj,ξ∣∣z 1|βaj,ξ|≤T s,+j,ξ,γ
+
∑
ξ∈Ξj

∣∣βaj,ξ∣∣z max
(

1T s,+
j,ξ,γ

<T s
j,ξ,γ

,1∣∣β̂a
j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

)

+
∑
ξ∈Ξj

∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z 1|βaj,ξ|>T b,−j,ξ,γ +
∑
ξ∈Ξj

∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z max
(

1T b,−
j,ξ,γ

>T b
j,ξ,γ

,1∣∣β̂a
j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

)
def= SS0

j,z + SS1
j,z + SB1

j,z + SB2
j,z .

We bound the expectations of the random terms as follows

E
[
MS1
j,z

]
≤ sup
ξ∈Ξj

∣∣βaj,ξ∣∣z E
[

sup
ξ∈Ξj

max
(

1T s,+
j,ξ,γ

<T s
j,ξ,γ

,1∣∣β̂a
j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

)]

≤ sup
ξ∈Ξj

∣∣βaj,ξ∣∣z
P

 ⋃
ξ∈Ξj

{
T s,+j,ξ,γ < T sj,ξ,γ

}+ P

 ⋃
ξ∈Ξj

{∣∣∣β̂aj,ξ − βaj,ξ∣∣∣ > ∆j,ξ,γ

} ;

E
[
MB1
j,z

]
≤ E

[
sup
ξ∈Ξj

∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z 1|βaj,ξ|>T b,−j,ξ,γ

]
;

E
[
MB2
j,z

]
≤ E

[
sup
ξ∈Ξj

∣∣∣β̂aj,ξ − βaj,ξ∣∣∣zτ
]1/τ

E

[
sup
ξ∈Ξj

max
(

1T b,−
j,ξ,γ

>T b
j,ξ,γ

,1∣∣β̂a
j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

)]1−1/τ

≤ E

[
sup
ξ∈Ξj

∣∣∣β̂aj,ξ − βaj,ξ∣∣∣zτ
]1/τ

P

 ⋃
ξ∈Ξj

{
T b,−j,ξ,γ > T bj,ξ,γ

}+ P

 ⋃
ξ∈Ξj

{∣∣∣β̂aj,ξ − βaj,ξ∣∣∣ > ∆j,ξ,γ

}1−1/τ

;

E
[
SS1
j,z

]
=
∑
ξ∈Ξj

∣∣βaj,ξ∣∣z E [max
(

1T s,+
j,ξ,γ

<T s
j,ξ,γ

,1∣∣β̂a
j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

)]
≤
∑
ξ∈Ξj

∣∣βaj,ξ∣∣z (P{T s,+j,ξ,γ < T sj,ξ,γ

}
+ P

{∣∣∣β̂aj,ξ − βaj,ξ∣∣∣ > ∆j,ξ,γ

})
;

E
[
SB1
j,z

]
=
∑
ξ∈Ξj

E
[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z]1|βaj,ξ|>T b,−j,ξ,γ ;

E
[
SB2
j,z

]
=
∑
ξ∈Ξj

E
[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z max

(
1T b,−

j,ξ,γ
>T b

j,ξ,γ
,1∣∣β̂a

j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

)]

≤
∑
ξ∈Ξj

(
E
[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣zτ])1/τ (

P
{
T b,−j,ξ,γ > T bj,ξ,γ

}
+ P

{∣∣∣β̂aj,ξ − βaj,ξ∣∣∣ > ∆j,ξ,γ

})1−1/τ
.

23



The constant τ > 1 in the Hölder inequality will be specified later.

7.6.4 Bernstein inequality and the term
∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z

Let denote variance of Gj,ξ(X,Y )

σ2
j,ξ

def= E
[(
Gj,ξ(X,Y )− βaj,ξ

)2]
.

Lemma 15 We have

E
[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z] ≤ 2

(
c2,z

(
2√
n
σj,ξ

)z
+ c1,z

(
4

3nMj,ξ

)z)
.

Proof. The Bernstein inequality yields

P
{∣∣∣β̂aj,ξ − βaj,ξ∣∣∣ ≥ u} ≤ 2e

− nu2

2
(
(σj,ξ)2

+Mj,ξu/3
)

≤ 2
(
e
− nu2

4(σj,ξ)2
+ e
− 3nu

4Mj,ξ

)
.

Using now E [|X|z] =
∫
R+ zu

z−1P{|X| > u}du, we obtain

E
[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z] ≤ ∫

R+
zuz−1P

{∣∣∣β̂aj,ξ − βaj,ξ∣∣∣ ≥ u} du
≤
∫
R+
zuz−12

(
e
− nu2

4(σj,ξ)2
+ e
− 3nu

4Mj,ξ

)
du,

hence the inequality from the lemma follows from (31) and (32). �

Lemma 15 is used to obtain a uniform upper bound of the power of the ratio between
∣∣∣β̂aj,ξ − βaj,ξ∣∣∣

and a threshold cσ
√

log(n)/nσj,ξ + cM log(n)/(n− 1)Mj,ξ:

E


∣∣∣β̂aj,ξ − βaj,ξ∣∣∣

cσ
√

log(n)/nσj,ξ + cM log(n)/(n− 1)Mj,ξ

z ≤ 2

c2,z
2 1

cσ
√

logn+ cM
√
n logn
n−1

Mj,ξ

σj,ξ

z

+c1,z

(
4
3

1
cσ
√
n
√

logn σj,ξ
Mj,ξ

+ cM log(n) n
n−1

)z)

≤ 2
(
c2,z

(
2 1
cσ
√

logn

)z
+ c1,z

(
4
3

1
cM logn

)z)
.

(34)

The following similar lemma is useful to handle the case p =∞.
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Lemma 16 For any Ξ′j ⊂ Ξj, we have

E

 sup
ξ∈Ξ′

j


∣∣∣β̂aj,ξ − βaj,ξ∣∣∣

uj,ξ

z ≤ (2
√

2√
n

sup
ξ∈Ξ′

j

σj,ξ
cj,ξ

)z (
2 +

(
log
(
c2,z

∣∣Ξ′j∣∣))z/2)

+
(

8
3n sup

ξ∈Ξ′
j

Mj,ξ

cj,ξ

)z (
2 +

(
log
(
c1,z

∣∣Ξ′j∣∣))z) . (35)

Proof. A uniform union bound yields

P

 sup
ξ∈Ξ′

j

∣∣∣β̂aj,ξ − βaj,ξ∣∣∣
uj,ξ

≥ τ


≤ min

1,
∣∣Ξ′j∣∣ 2

e− 1
4n

(
infξ∈Ξ′

j

uj,ξ
σj,ξ

)2
τ2

+ e
− 3

4n

(
infξ∈Ξ′

j

uj,ξ
Mj,ξ

)
τ


≤ min

1,
∣∣Ξ′j∣∣ 2e− 1

4n

(
infξ∈Ξ′

j

uj,ξ
σj,ξ

)2
τ2

+ min
(

1,
∣∣Ξ′j∣∣ 2e− 3

4n

(
infξ∈Ξ′

j

uj,ξ
Mj,ξ

)
τ

)
This yields

E

 sup
ξ∈Ξ′

j


∣∣∣β̂aj,ξ − βaj,ξ∣∣∣

uj,ξ

z ≤ ∫
R+
zτz−1 min

1,
∣∣Ξ′j∣∣ 2e− 1

4n

(
infξ∈Ξ′

j

uj,ξ
σj,ξ

)2
τ2

 dτ

+
∫
R+
zτz−1 min

(
1,
∣∣Ξ′j∣∣ 2e− 3

4n

(
infξ∈Ξ′

j

uj,ξ
Mj,ξ

)
τ

)
dτ,

and thus, for any τ1 ≥ 0 and τ2 ≥ 0, we get

E

 sup
ξ∈Ξ′

j


∣∣∣β̂aj,ξ − βaj,ξ∣∣∣

uj,ξ

z ≤ τz2 +
∫
τ≥τ2

zτz−1 ∣∣Ξ′j∣∣ 2e− 1
4n

(
infξ∈Ξ′

j

uj,ξ
σj,ξ

)2
τ2

dτ

+ τz1 +
∫
τ≥τ1

zτz−1 ∣∣Ξ′j∣∣ 2e− 3
4n

(
infξ∈Ξ′

j

uj,ξ
Mj,ξ

)
τ
dτ.

Take

τ1 = 8
3n

log
(
c1,z

∣∣Ξ′j∣∣)
infξ∈Ξ′

j

uj,ξ
Mj,ξ

and τ2 = 2
√

2√
n

√
log
(
c2,z

∣∣Ξ′j∣∣)
infξ∈Ξ′

j

uj,ξ
σj,ξ

.

Hence, by construction, we have:

∀τ ≥ τ1,
∣∣Ξ′j∣∣ 2e− 3

4n

(
infξ∈Ξ′

j

uj,ξ
Mj,ξ

)
τ
≤ 2
c1,z

e
− 3

8n

(
infξ∈Ξ′

j

uj,ξ
Mj,ξ

)
τ

∀τ ≥ τ2,
∣∣Ξ′j∣∣ 2e− 1

4n

(
infξ∈Ξ′

j

uj,ξ
σj,ξ

)2
τ2

≤ 2
c2,z

e
− 1

8n

(
infξ∈Ξ′

j

uj,ξ
σj,ξ

)2
τ2

.
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This implies

E

 sup
ξ∈Ξ′

j


∣∣∣β̂aj,ξ − βaj,ξ∣∣∣

uj,ξ

z
≤

2
√

2√
n

√
log
(
c2,z

∣∣Ξ′j∣∣)
infξ∈Ξ′

j

uj,ξ
σj,ξ

z

+ 2
(

2
√

2√
n

1
infξ∈Ξ′

j

uj,ξ
σj,ξ

)z

+
(

8
3n

log
(
c1,z

∣∣Ξ′j∣∣)
infξ∈Ξ′

j

uj,ξ
Mj,ξ

)z
+ 2

(
8

3n
1

infξ∈Ξ′
j

uj,ξ
Mj,ξ

)z
,

which allows to establish the claimed result. �

Lemma 16 allows to obtain the upper bounds (37) and (38) below.
For uj,ξ = σj,ξ, we obtain

E

 sup
ξ∈Ξ′

j


∣∣∣β̂aj,ξ − βaj,ξ∣∣∣

σj,ξ

z
≤
(

2
√

2√
n

)z (
2 +

(
log
(
c2,z

∣∣Ξ′j∣∣))z/2)+
(

8
3n sup

ξ∈Ξ′
j

Mj,ξ

σj,ξ

)z (
2 +

(
log
(
c1,z

∣∣Ξ′j∣∣))z) .
For future use, note that we can also use the uniform bounds Mj (see (26)) and

σj,ξ ≤ C2B(d, 2)B1/2
X 2jν(d) def= σj (36)

instead of Mj,ξ and σj,ξ, and obtain

E

[
sup
ξ∈Ξ′

j

∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z
]

≤
(

2
√

2√
n
σj

)z (
2 +

(
log
(
c2,z

∣∣Ξ′j∣∣))z/2)+
(

8
3nMj

)z (
2 +

(
log
(
c1,z

∣∣Ξ′j∣∣))z) . (37)

Along the same lines, with uj,ξ = cσ
√

log(n)/nσj,ξ + cM log(n)/(n− 1)Mj,ξ , we obtain

E

 sup
ξ∈Ξ′

j


∣∣∣β̂aj,ξ − βaj,ξ∣∣∣

c′σ
√

lognσj,ξ√
n

+ c′M lognMj,ξ

n−1

z
≤
(

2
√

2
c′σ
√

logn

)z (
2 +

(
log
(
c2,z

∣∣Ξ′j∣∣))z/2)+
(

8
3c′M logn

)z (
2 +

(
log
(
c1,z

∣∣Ξ′j∣∣))z) , (38)

recall that when Ξ′j = Ξj ,
∣∣Ξ′j∣∣ ≤ CΞ2j(d−1).
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7.6.5 Empirical Bernstein and the probabilities

We take

∆j,ξ,γ =
√

2γtnσ̂j,ξ + 14
3 Mj,ξ

γ logn
n− 1 ;

Tj,ξ,γ = 2∆j,ξ,γ , T bj,ξ,γ = ∆j,ξ,γ , T sj,ξ,γ = 3∆j,ξ,γ ;

∆+
j,ξ,γ =

√
2γtnσj,ξ + 26

3 Mj,ξ
γ logn
n− 1 and ∆−j,ξ,γ =

√
2γtnσj,ξ + 2

3Mj,ξ
γ logn
n− 1 ;

T b,−j,ξ,γ = ∆−j,ξ,γ and T s,+j,ξ,γ = 3∆+
j,ξ,γ .

Lemma 17 The following upper bounds hold:

P
{
T b,−j,ξ,γ > T bj,ξ,γ

}
≤ 1
nγ

;

P
{
T s,+j,ξ,γ < T sj,ξ,γ

}
≤ 1
nγ

;

P
{∣∣∣β̂aj,ξ − βaj,ξ∣∣∣ > ∆j,ξ,γ

}
≤ 3
nγ

;

P

 ⋃
ξ∈Ξj

{
T s,+j,ξ,γ < T sj,ξ,γ

} ≤∑
ξ∈ξj

P
{
T s,+j,ξ,γ < T sj,ξ,γ

}
≤ CΞ2j(d−1) 1

nγ
;

P

 ⋃
ξ∈Ξj

{
T b,−j,ξ,γ > T bj,ξ,γ

} ≤∑
ξ∈ξj

P
{
T b,−j,ξ,γ > T bj,ξ,γ

}
≤ CΞ2j(d−1) 1

nγ
;

P

 ⋃
ξ∈Ξj

{∣∣∣β̂aj,ξ − βaj,ξ∣∣∣ > ∆j,ξ,γ

} ≤∑
ξ∈ξj

P
{∣∣∣β̂aj,ξ − βaj,ξ∣∣∣ > ∆j,ξ,γ

}
≤ CΞ2j(d−1) 3

nγ
.

Proof. Using the results of [23], we get:

P
{
σj,ξ > σ̂j,ξ + 2

√
2u Mj,ξ√

n− 1

}
≤ e−u;

P
{
σj,ξ < σ̂j,ξ − 2

√
2u Mj,ξ√

n− 1

}
≤ e−u;

P
{∣∣∣β̂aj,ξ − βaj,ξ∣∣∣ > √2uσ̂j,ξ√

n
+ 14

3 Mj,ξ
u

n− 1

}
≤ 3e−u,

which yields the first inequalities. The others follow from the union bound. �

7.6.6 The case p =∞

Let us consider the various terms one by one.
Error in the high dimensional space.

E [Mj,z] ≤ E
[
MS0
j,z

]
+ E

[
MS1
j,z

]
+ E

[
MB1
j,z

]
+ E

[
MB2
j,z

]
,
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with

E
[
MS0
j,z

]
= sup
ξ∈Ξj

∣∣βaj,ξ∣∣z 1|βaj,ξ|≤T s,+j,ξ,γ
;

E
[
MS1
j,z

]
≤ CΞ2j(d−1) 4

nγ
sup
ξ∈Ξj

∣∣βaj,ξ∣∣z ;

E
[
MB1
j,z

]
≤ E

[
sup
ξ∈Ξj

∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z 1|βaj,ξ|>T b,−j,ξ,γ

]
;

E
[
MB2
j,z

]
≤
(
CΞ2j(d−1) 4

nγ

)1−1/τ
((

2
√

2√
n
σj

)z (
21/τ +

(√
log (|Ξj | c1,zτ )

)z)
+
(

8
3nMj

)z (
21/τ + (log (|Ξj | c1,zτ ))z

))
,

where we have used (a+ b)1/τ ≤ a1/τ + b1/τ for τ ≥ 1.
This yields

E
[∥∥∥f̂−β a,ρ − f−β a,J∥∥∥z∞

]
(J + 1)z−1C ′z∞

≤
J∑
j=0

2j(d−1)z/2

(
sup
ξ∈Ξj

∣∣βaj,ξ∣∣z 1|βaj,ξ|≤T s,+j,ξ,γ
+ E

[
sup
ξ∈Ξj

∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z 1|βaj,ξ|>T b,−j,ξ,γ

])

+ 4
nγ
CΞ

J∑
j=0

2j(d−1)(z/2+1) sup
ξ∈Ξj

∣∣βaj,ξ∣∣z
+
(
CΞ

4
nγ

)1−1/τ J∑
j=0

2j(d−1)(z/2+1−1/τ)

×

((
2
√

2√
n
σj

)z (
21/τ +

(√
log (|Ξj | c1,zτ )

)z)
+
(

8
3nMj

)z (
21/τ + (log (|Ξj | c1,zτ ))z

))
def= O′∞,z +R′1,∞,z +R′2,∞,z.

The terms R′1,∞,z and R′2,∞,z. The term R′1,∞,z is the term which appears in Theorem 14 and thus
we only need to bound R′2,∞,z. As in the case p <∞, we can use the uniform bounds on σj,ξ and
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Mj,ξ, namely, (26) and (36), and |Ξj | ≤ |ΞJ | to obtain

R′2,∞,z

≤
(

4CΞ

nγ

)1−1/τ J∑
j=0

2j(d−1)(z/2+1−1/τ)

×

((
2
√

2√
n
C2B(d, 2)2jν(d)B

1/2
X

)z (
21/τ + (log (c2,zτ |ΞJ |))z/2

)
+
(

8
3nC∞B(d,∞)2j(ν(d)+(d−1)/2)BX

)z (
21/τ + (log (c1,zτ |ΞJ |))z

))

≤
(

4CΞ

nγ

)1−1/τ
(2

√
2√
n
C2B(d, 2)B1/2

X

)z (
21/τ + (log (|ΞJ | c2,zτ ))z/2

) J∑
j=0

2j(ν(d)z+(d−1)(z/2+1−1/τ))

+
(

8
3nC∞B(d,∞)BX

)z (
21/τ + (log (|ΞJ | c1,zτ ))z

) J∑
j=0

2j(ν(d)z+(d−1)(z+1−1/τ))


≤
(

4CΞ

nγ

)1−1/τ
[(

2
√

2√
n
C2B(d, 2)B1/2

X

)z (
21/τ + (log (c2,zτ |ΞJ |))z/2

) 2J(ν(d)z+(d−1)(z/2+1−1/τ))

1− 2−(ν(d)z+(d−1)(z/2+1−1/τ))

+
(

8
3nC∞B(d,∞)BX

)z (
21/τ + (log (c1,zτ |ΞJ |))z

) 2J(ν(d)z+(d−1)(z+1−1/τ))

1− 2−(ν(d)z+(d−1)(z+1−1/τ))

]
.

The term O′∞,z. Denote by

O′z,j = sup
ξ∈Ξj

∣∣βaj,ξ∣∣z 1|βaj,ξ|≤T s,+j,ξ,γ
+ E

[
sup
ξ∈Ξj

∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z 1|βaj,ξ|>T b,−j,ξ,γ

]
.

Because T s,++
j,ξ,γ ≥ T

s,+
j,ξ,γ , we get

E

[
sup
ξ∈Ξj

∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z 1|βaj,ξ|>T b,−j,ξ,γ

]

= E

[
sup
ξ∈Ξj

∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z 1|βaj,ξ|>T s,++
j,ξ,γ

]
+ E

[
sup
ξ∈Ξj

∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z 1T s,++
j,ξ,γ

≥|βaj,ξ|>T b,−j,ξ,γ

]

≤ E

[
sup
ξ∈Ξj

∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z 1|βaj,ξ|>T s,++
j,ξ,γ

]

+ E

 sup
ξ∈Ξj


∣∣∣β̂aj,ξ − βaj,ξ∣∣∣

T b,−j,ξ,γ
1T s,++

j,ξ,γ
≥|βaj,ξ|>T b,−j,ξ,γ

z sup
ξ∈Ξj

{∣∣βaj,ξ∣∣z 1T s,++
j,ξ,γ

≥|βaj,ξ|>T b,−j,ξ,γ

}
,
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thus

O′z,j ≤

1 + E

 sup
ξ∈Ξj


∣∣∣β̂aj,ξ − βaj,ξ∣∣∣

T b,−j,ξ,γ

z sup
ξ∈Ξj

{∣∣βaj,ξ∣∣z 1|βaj,ξ|≤T s,++
j,ξ,γ

}

+ E

[
sup
ξ∈Ξj

∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z 1|βaj,ξ|>T s,++
j,ξ,γ

]
.

Using now (38), with c′σ =
√

2γ and c′M = 2
3γ, and |Ξj | ≤ CΞ2j(d−1), we get the upper bound in

Theorem 14.

7.6.7 The case p <∞

Let us consider the various terms one by one.
Error in the high dimensional space. We obtain

E [Sj,z] = E
[
SS0
j,z

]
+ E

[
SS1
j,z

]
+ E

[
SB1
j,z

]
+ E

[
SB2
j,z

]
.

with

E
[
SS0
j,z

]
=
∑
ξ∈Ξj

∣∣βaj,ξ∣∣z 1|βaj,ξ|≤T s,+j,ξ,γ
;

E
[
SS1
j,z

]
≤ 4
nγ

∑
ξ∈Ξj

∣∣βaj,ξ∣∣z ;

E
[
SB1
j,z

]
≤
∑
ξ∈Ξj

E
[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z]1|βaj,ξ|>T b,−j,ξ,γ ;

E
[
SB2
j,z

]
≤ 41−1/τ

nγ(1−1/τ)

∑
ξ∈Ξj

21/τ
((

2c1/(zτ)
2,zτ

σj,ξ√
n

)z
+
(

4
3c

1/(zτ)
1,zτ

Mj,ξ

n

)z)
,
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where we have used (a+ b)1/τ ≤
(
a1/τ + b1/τ

)
. This yields

E
[∥∥∥f̂−β a,ρ − f−β a,J∥∥∥z

p

]
(J + 1)z−1C ′zp C

z/(p∧z)−1
Ξ

≤
J∑
j=0

2j(d−1)z(1/2−1/(p∨z))E [Sj,z]

≤
J∑
j=0

2j(d−1)z(1/2−1/(p∨z))
∑
ξ∈Ξj

(∣∣βaj,ξ∣∣z 1|βaj,ξ|≤T s,+j,ξ,γ
+ E

[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z]1|βaj,ξ|>T b,−j,ξ,γ

)

+ 4
nγ

J∑
j=0

2j(d−1)z(1/2−1/(p∨z))
∑
ξ∈Ξj

∣∣βaj,ξ∣∣z
+ 22−1/τ

nγ(1−1/τ)

J∑
j=0

2j(d−1)z(1/2−1/(p∨z))
∑
ξ∈Ξj

((
2c1/(zτ)

2,zτ
σj,ξ√
n

)z
+
(

4
3c

1/(zτ)
1,zτ

Mj,ξ

n

)z)
def= Op,z +R1,p,z +R2,p,z.

The terms R1,p,z and R2,p,z. The term R1,p,z appears as is in Lemma 14. To bound the term R2,p,z,
we rely on (26). We obtain

∑
ξ∈Ξj

21/τ
((

2c1/(zτ)
2,zτ

σj√
n

)z
+
(

4
3c

1/(zτ)
1,zτ

Mj

n

)z)

≤
∑
ξ∈Ξj

21/τ
(

2c1/(zτ)
2,zτ C2B(d, 2)2jν(d)B

1/2
X

1√
n

)z
+
∑
ξ∈Ξj

21/τ
(

4
3c

1/(zτ)
1,zτ C∞B(d,∞)2j(ν(d)+(d−1)/2)BX

1
n

)z
≤ CΞ21/τ

(
2c1/(zτ)

2,zτ C2B(d, 2)
)z
B
z/2
X

1
nz/2

2j((d−1)+zν(d))

+ CΞ21/τ
(

4
3c

1/(zτ)
1,zτ C∞B(d,∞)

)z
BzX

1
nz

2j((d−1)+z(ν(d)+(d−1)/2));
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this yields

J∑
j=0

2j(d−1)z(1/2−1/(p∨z))
∑
ξ∈Ξj

21/τ
((

2c1/(zτ)
2,zτ

σj√
n

)z
+
(

4
3c

1/(zτ)
1,zτ

Mj

n

)z)

≤
J∑
j=0

2j(d−1)z(1/2−1/(p∨z))CΞ21/τ
(

2c1/(zτ)
2,zτ C2B(d, 2)

)z
B
z/2
X

1
nz/2

2j((d−1)+zν(d))

+
J∑
j=0

2j(d−1)z(1/2−1/(p∨z))CΞ21/τ
(

4
3c

1/(zτ)
1,zτ C∞B(d,∞)

)z
BzX

1
nz

2j((d−1)+z(ν(d)+(d−1)/2))

≤ CΞ21/τ
(

2c1/(zτ)
2,zτ C2B(d, 2)

)z
B
z/2
X

1
nz/2

J∑
j=0

2jz(ν(d)+(d−1)/z+(d−1)(1/2−1/(p∨z)))

+ CΞ21/τ
(

4
3c

1/(zτ)
1,zτ C∞B(d,∞)

)z
BzX

1
nz

J∑
j=0

2jz(ν(d)+(d−1)/z+(d−1)(1−1/(p∨z))

≤
CΞ21/τ

(
2c1/(zτ)

2,zτ C2B(d, 2)
)z

1− 2−z(ν(d)+(d−1)/z+(d−1)(1/2−1/(p∨z)))B
z/2
X

1
nz/2

2Jz(ν(d)+(d−1)/z+(d−1)(1/2−1/(p∨z)))

+
CΞ21/τ

(
4
3c

1/(zτ)
1,zτ C∞B(d,∞)

)z
1− 2−z(ν(d)+(d−1)/z+(d−1)(1−1/(p∨z))B

z
X

1
nz

2Jz(ν(d)+(d−1)/z+(d−1)(1−1/(p∨z)).

The term Op,z. Denote by

Oz,j,ξ =
∣∣βaj,ξ∣∣z 1|βaj,ξ|≤T s,+j,ξ,γ

+ E
[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z]1|βaj,ξ|>T b,−j,ξ,γ .

Because T s,++
j,ξ,γ ≥ T

s,+
j,ξ,γ , we get

E
[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z]1|βaj,ξ|>T b,−j,ξ,γ

= E
[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z]1|βaj,ξ|>T s,++

j,ξ,γ
+ E

[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z]1T s,++
j,ξ,γ

≥|βaj,ξ|>T b,−j,ξ,γ

≤ E
[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z]1|βaj,ξ|>T s,++

j,ξ,γ
+

E
[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z](

T b,−j,ξ,γ

)z ∣∣βaj,ξ∣∣z 1T s,++
j,ξ,γ

≥|βaj,ξ|>T b,−j,ξ,γ ,

Oz,j,ξ ≤

1 +
E
[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z](

T b,−j,ξ,γ

)z
∣∣βaj,ξ∣∣z 1|βaj,ξ|≤T s,++

j,ξ,γ
+ E

[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z]1|βaj,ξ|>T s,++
j,ξ,γ

.
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Now using the results of Section 7.6.4, with T b,−j,ξ,γ =
√

2γtnσj,ξ + 2
3γ

logn
n−1Mj,ξ, we obtain

sup
j,ξ

E
[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z](

T b,−j,ξ,γ

)z ≤ 2
(
c2,z

(
2 1√

2γ
√

logn

)z
+ c1,z

(
4
3

1
(2/3)γ logn

)z)

≤ 2
(( √

2c1/z2,z√
γ logn

)z
+
(

2c1/z1,z

γ logn

)z)
.

This yields

Op,z ≤

(
1 + 2

(( √
2c1/z2,z√
γ logn

)z
+
(

2c1/z1,z

γ logn

)z)) J∑
j=0

2j(d−1)z(1/2−1/(p∨z))

∑
ξ∈Ξj

(∣∣βaj,ξ∣∣z 1|βaj,ξ|≤T s,++
j,ξ,γ

+ E
[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z]1|βaj,ξ|>T s,++

j,ξ,γ

)
.

7.7 Proof of Theorem 9
This proof requires an upper bound on: the approximation error, R1,p,z, R1,p,z, and Op,z. We use
that because fβ ∈ Bsr,q(M), we have, by Lemma 13, f−β ∈ Bsr,q(ceqM).

7.7.1 The case 1 ≤ p <∞

Let us consider the terms one by one.
The approximation error. Start with

∥∥∥f−β a,J − f−β ∥∥∥
p

=

∥∥∥∥∥∥
∑
j>J

∑
ξ∈Ξj

βaj,ξψj,ξ

∥∥∥∥∥∥
p

.

From Lemma 6 (i) and the definition of the Besov spaces as a sequence space, with 1/q + 1/q̃ = 1,
we obtain ∥∥∥∥∥∥

∑
j>J

∑
ξ∈Ξj

βaj,ξψj,ξ

∥∥∥∥∥∥
p

≤ C ′p
∑
j>J

2−js2j(s+(d−1)(1/2−1/p))
∥∥∥(βaj,ξ)ξ∈Ξj

∥∥∥
`p
,

which yields∥∥∥∥∥∥
∑
j>J

∑
ξ∈Ξj

βaj,ξψj,ξ

∥∥∥∥∥∥
p

≤ C ′p2−Js(2sq̃ − 1)−1/q̃
∥∥∥f−β ∥∥∥

Bsp,q

≤


C ′pceqMC

1/p−1/r
Ξ (2sq̃ − 1)−1/q̃

∥∥∥f−β ∥∥∥
Bsp,q

2−Js if r ≥ p

C ′pceqM(2sq̃ − 1)−1/q̃
∥∥∥f−β ∥∥∥

Bsp,q

2−J(s−(d−1)(1/r−1/p)) if r ≤ p.
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It is enough to consider the worst case where r ≤ p and to check that s−(d−1)(1/r−1/p)
ν(d)+(d−1)/2 ≥ µ in the

two zones.
In the dense zone, we have

s+ ν(d) + d− 1
2 ≥

(
ν(d) + d− 1

2

)
p

r
,

which yields
s

s+ ν(d) + d−1
2
≤ s(

ν(d) + d−1
2
)
p
r

.

Because s > (d− 1)/r and p ≥ r, we have

s− d− 1
r

+ d− 1
p
− sr

p
= (d− 1)

(
sr

d− 1 − 1
)(

1
r
− 1
p

)
≥ 0,

which yields s− (d− 1)(1/r − 1/p) ≥ sr
p and gives the result.

In the sparse zone, because s > (d− 1)/r, we have

s− (d− 1)(1/r − 1/p)
ν(d) + (d− 1)/2 ≥ s− (d− 1)(1/r − 1/p)

s+ ν(d)− (d− 1)(1/r − 1/2) .

The terms R1,p,p and R2,p,p. Using Lemma 7 (iii) we obtain

R1,p,p ≤
4
nγ

(ceqM)pC1−(p∧r)/r
Ξ

J∑
j=0

2−jp(s+(d−1)(1/p−1/(p∧r))),

where the exponent is nonpositive because s > (d− 1)/r, thus

R1,p,p ≤
4(ceqM)pC1−(p∧r)/r

Ξ
nγ
(
1− 2−p(s+(d−1)(1/p−1/(p∧r)))

) .
With γ > p/2, R1,p,p is of lower order than tpn.
We also have

R2,p,p ≤
22−1/τ

nγ(1−1/τ)CΞbn,p,p,J,τ .

With the aforementioned choice of J ,

1√
n

2J(ν(d)+(d−1)/2)B
1/2
X . 1;

2J(d−1)

n
BX . 1.

Together, these yield that bn,p,p,J,τ is of the order of a constant.
This term is also of lower order than tpn for τ large enough such that γ(1− 1/τ) > p/2.
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The term Op,p. First note that an,p,p,J = 1 + o(1).
We take T s,++

j,ξ,γ uniform in ξ:

T s,++
j,ξ,γ = 3

√
2γtnC2B(d, 2)2jν(d)B

1/2
X

+ 52C∞B(d,∞)2j(ν(d)+(d−1)/2)BX
γ logn
n− 1

≤ 2jν(d)√γtnB1/2
X

(
3
√

2C2B(d, 2) + 52C∞B(d,∞)
n
√
γ

n− 1

)
,

where the last display uses the upper bound on J , this yields, for n ≥ 2,

T s,++
j,ξ,γ ≤ 2jν(d)√γtnB1/2

X

(
3
√

2C2B(d, 2) + 104C∞B(d,∞)
)

def= T s,++
j,γ .

As a consequence of Lemma 15, we get

E
[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣p] ≤ 2

((
2c1/p2,p

σj√
n

)p
+
(

4
3c

1/p
1,p

Mj

n

)p)
≤ 2

(
2c1/p2,p C2B(d, 2)2jν(d)B

1/2
X

1√
n

)p
+ 2

(
8
3c

1/p
1,p C∞B(d,∞)2j(ν(d)+(d−1)/2)BX

1
n

)p
≤ 2jpν(d) 1

np/2
B
p/2
X 2p+1

(
c
1/p
2,p C2B(d, 2) + 4

3c
1/p
1,p C∞B(d,∞)

)p
≤

(
T s,++
j,γ

)p
(γ logn)p/2

2
(

2
c
1/p
2,p C2B(d, 2) + 4

3c
1/p
1,p C∞B(d,∞)

3
√

2C2B(d, 2) + 104C∞B(d,∞)
(√
γ
))p

≤
(
T s,++
j,γ

)p
(γ logn)p/2

2
(√

2
3 c

1/p
2,p +

c
1/p
1,p

78√γ

)p
.

Let Cγ = 3
√

2C2B(d, 2) + 104C∞B(d,∞)√γ and Cσ,p = 21/p

(√
2

3 c
1/p
2,p +

c
1/p
1,p

78√γ

)
.

For any 0 < z < p, we have∑
ξ∈Ξj

(∣∣βaj,ξ∣∣p 1|βaj,ξ|≤T s,++
j,γ

+ E
[∣∣∣β̂aj,ξ − βaj,ξ∣∣∣p]1|βaj,ξ|>T s,++

j,γ

)

≤
∑
ξ∈Ξj

(∣∣βaj,ξ∣∣p 1|βaj,ξ|≤T s,++
j,γ

+
(
T s,++
j,γ

)p
(γ logn)p/2

Cpσ,p1|βaj,ξ|>T s,++
j,ξ,γ

)

≤
(

1 +
Cpσ,p

(γ logn)p/2

)(
T s,++
j,γ

)p−z ∑
ξ∈Ξj

∣∣βaj,ξ∣∣z
≤
(

1 +
Cpσ,p

(γ logn)p/2

)(√
γtnB

1/2
X Cγ

)p−z
2jν(d)(p−z)

∑
ξ∈Ξj

∣∣βaj,ξ∣∣z .
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We need to sum over j and take two different values for z, one that we denote z1 for j ≤ j0 and
one that we denote z2 for j0 < j ≤ J . The values of z1, z2, j0 will be specified later, depending on
the value of the parameters r, q, s and p such that we are in the dense or sparse zone. Up to a
multiplying constant, we thus need to control

A+B =
(
B

1/2
X tn

)p−z1 j0∑
j=0

2j[ν(d)(p−z1)+(d−1)(p/2−1)]
∑
ξ∈Ξj

∣∣βaj,ξ∣∣z1
+
(
B

1/2
X tn

)p−z2 J∑
j=j0+1

2j[ν(d)(p−z2)+(d−1)(p/2−1)]
∑
ξ∈Ξj

∣∣βaj,ξ∣∣z2 ,
where we choose adequately z1, z2 and j0 in the two zones. Because of Lemma 7 (i), we only
consider p ≥ r.
Let us first consider the dense zone. We define

r̃ = p(ν(d) + (d− 1)/2)
s+ ν(d) + (d− 1)/2 .

In the dense zone, r̃ ≤ r, p > r̃ and

s =
(
ν(d) + d− 1

2

)(p
r̃
− 1
)
. (39)

With z2 = r, we get

B ≤
(
B

1/2
X tn

)p−r J∑
j=j0+1

2j[ν(d)(p−r)+(d−1)(p/2−1)]
∑
ξ∈Ξj

∣∣βaj,ξ∣∣r .
Lemma 7 (iii) gives that ∑

ξ∈Ξj

|βj,ξ|r ≤ Dr
j2−jr(s+(d−1)(1/2−1/r)),

where ∀j ∈ N, Dj ≥ 0, (Dj)j∈N ∈ `q. Note that

s+ (d− 1)
(

1
2 −

1
r

)
= (d− 1)p

2r̃ − d− 1
r

+ ν(d)
(p
r̃
− 1
)
, (40)

thus

B ≤
(
B

1/2
X tn

)p−r J∑
j=j0+1

2jp(1− rr̃ )(ν(d)+ d−1
2 )Dr

j

. (ceqM)r
(
B

1/2
X tn

)p−r
2j0p(1− rr̃ )(ν(d)+ d−1

2 ),

for q ≥ 1 if r > r̃ and for q ≤ r if r = r̃ (i.e., s = p
(
ν(d) + d−1

2
) ( 1

r −
1
p

)
).

Taking 2j0
p
r̃ (ν(d)+ d−1

2 ) '
(
B

1/2
X tn

)−1
, we get

B .Mr
(
B

1/2
X tn

)p−r̃
,
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which is the rate that we expect in that zone.
As for A, we take z1 = r < r̃ ≤ r, this yields, using Lemma 7 (iii),

A ≤
(
B

1/2
X tn

)p−r j0∑
j=0

2j[ν(d)(p−r)+(d−1)(p/2−1)]
∑
ξ∈Ξj

∣∣βaj,ξ∣∣r
.Mr

(
B

1/2
X tn

)p−r j0∑
j=0

2j[ν(d)(p−r)+(d−1)(p/2−1)−r(s+(d−1)(1/2−1/r))]

.Mr
(
B

1/2
X tn

)p−r j0∑
j=0

2jp(ν(d)+(d−1)/2)(1−r/r̃) (using (39))

.Mr
(
B

1/2
X tn

)p−r
2j0p(ν(d)+(d−1)/2)(1−r/r̃)

.Mr
(
B

1/2
X tn

)p−r̃
(from the definition of j0).

Let us now consider the sparse zone. We define by

r̃ = p
ν(d) + (d− 1)(1/2− 1/p)

s+ ν(d)− (d− 1)(1/r − 1/2) ,

in a such a way that

p− r̃ = p
s− (d− 1)(1/r − 1/p)

s+ ν(d)− (d− 1)(1/r − 1/2) ;

r̃ − r = (p− r)((d− 1)/2 + ν(d))− rs
s+ ν(d)− (d− 1)(1/r − 1/2) > 0;

s+ (d− 1)
(

1
2 −

1
r

)
= (d− 1)p

2r̃ − d− 1
r̃

+ ν(d)
(p
r̃
− 1
)
. (41)

For the term A, we take z1 = r and obtain

A ≤
(
B

1/2
X tn

)p−r j0∑
j=0

2j[ν(d)(p−r)+(d−1)(p/2−1)]
∑
ξ∈Ξj

∣∣βaj,ξ∣∣r
≤
(
B

1/2
X tn

)p−r j0∑
j=0

2j[ν(d)+(d−1)(1/2−1/p) pr̃ (r̃−r)]Dr
j (using (41))

.
(
B

1/2
X tn

)p−r
2j0[(ν(d)+(d−1)(1/2−1/p) pr̃ (r̃−r)]Mr,

the last inequality holds because ν(d) + (d − 1)/2 − (d − 1)/p > 0, indeed, because we are in
the sparse zone ν(d) + (d − 1)/2 ≥ s/(p/r − 1) = sr/(p − r) ≥ 2/(p − r) ≥ (d − 1)/p. Taking
2j0(ν(d)+(d−1)(1/2−1/p)) pr̃ '

(
B

1/2
X tn

)−1
, yields

A .Mr
(
B

1/2
X tn

)p−r̃
.
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For the term B, we take z2 = r > r̃ > r and obtain

B ≤
(
B

1/2
X tn

)p−r J∑
j=j0+1

2j[ν(d)(p−r)+(d−1)(p/2−1)]
∑
ξ∈Ξj

∣∣βaj,ξ∣∣r
.
(
B

1/2
X tn

)p−r J∑
j=j0+1

2j(ν(d)+(d−1)(1/2−1/p))p(r−r)/r̃Dr
j (using (41))

.
(
B

1/2
X tn

)p−r
2j0(ν(d)+(d−1)(1/2−1/p))p(r−r)/r̃Mr

.
(
B

1/2
X tn

)p−r̃
Mr.

7.7.2 The case p =∞

Consider r =∞. The general case follows by Lemma 7 (ii).
The approximation error. Because fβ ∈ Bs∞,q(M), we have by Lemma 6 (i)∥∥∥∥∥∥

∑
j>J

∑
ξ∈Ξj

βaj,ξψj,ξ

∥∥∥∥∥∥
∞

≤
∑
j>J

∥∥∥∥∥∥
∑
ξ∈Ξj

βaj,ξψj,ξ

∥∥∥∥∥∥
∞

≤ C ′∞ceqM
∑
j>J

2j(d−1)/22−j(s+(d−1)/2)Dj (where ‖(Dj)j∈N‖q ≤ ceqM)

≤ C ′∞ceqM2−Js(2sq̃ − 1)−1/q̃.

From the choice of J , we get∥∥∥∥∥∥
∑
j>J

∑
ξ∈Ξj

βaj,ξψj,ξ

∥∥∥∥∥∥
∞

. C ′∞ceqM(2sq̃ − 1)−1/q̃
(
tnB

1/2
X

)s/(ν(d)+(d−1)/2)
.

This term is negligible because s/(ν(d) + (d− 1)/2) ≥ s/(sν(d) + (d− 1)/2).

The terms R′1,∞,z and R′2,∞,z. Using the definition of the Besov norm, we obtain

R′1,∞,z ≤
4
nγ

(ceqM)zCΞ

J∑
j=0

2−jzs2j(d−1)

.
4
nγ

2J(d−1)Mz.

With γ > z/2 + 1, which holds if 2(γ − 1)(1− 1/τ) > z, R1,∞,z is of lower order than tzn.
Due to the choice of J , the term in bracket in the expression of R′2,∞,z in Theorem 14 is less than
1. The second term in the expression of bn,∞,z,J,τ is of smaller order than the first term. The order
of bn,∞,z,J,τ is finally (logn)z/2. Thus, we have

R′2,∞,z .
(
n−γ2J(d−1)

)1−1/τ
(logn)z/2.

38



This term is also of lower order than tzn when τ is such that 2(γ − 1)(1− 1/τ) > z.

The term O′∞,z. Note that here an,∞,z,J is of the order of a constant. We now proceed like for the
term Op,p. Using (37), we obtain for arbitrary z ∈ [0, z]

sup
ξ∈Ξj

∣∣βaj,ξ∣∣z 1|βaj,ξ|≤T s,++
j,ξ,γ

+ E

[
sup
ξ∈Ξj

∣∣∣β̂aj,ξ − βaj,ξ∣∣∣z 1|βaj,ξ|>T s,++
j,ξ,γ

]

.
(√

γtnB
1/2
X

)z−z
2jν(d)(z−z) sup

ξ∈Ξj

∣∣βaj,ξ∣∣z .
We use an upper bound on A+B, where:

A =
(
B

1/2
X tn

)z−z1 j0∑
j=0

2j[ν(d)(z−z1)+(d−1)z/2] sup
ξ∈Ξj

∣∣βaj,ξ∣∣z1 ;

B =
(
B

1/2
X tn

)z−z2 J∑
j=j0+1

2j[ν(d)(z−z2)+(d−1)z/2] sup
ξ∈Ξj

∣∣βaj,ξ∣∣z2 ,
for well-chosen 0 ≤ j0 ≤ J , z1 and z2. Because f ∈ Bs∞,q(M), we have

∀z ≥ 1, sup
ξ∈Ξj

∣∣βaj,ξ∣∣z ≤ (ceqM)z2−j(s+(d−1)/2)z.

The result follows taking z1 = 0, j0 such that 2j0 ' t−1/(s+ν(d)+(d−1)/2)
n , and z2 = z.
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