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Abstract

To estimate geometrically regular images in the white noise model and obtain an adap-

tive near asymptotic minimaxity result, we consider a model selection based bandlet

estimator. This bandlet estimator combines the best basis selection behavior of the

model selection and the approximation properties of the bandlet dictionary. We de-

rive its near asymptotic minimaxity for geometrically regular images as an example of

model selection with general dictionary of orthogonal bases. This paper is thus also a

self contained tutorial on model selection with orthogonal bases dictionary.

Keywords:

model selection, white noise model, image estimation, geometrically regular

functions, bandlets

2000 MSC: 62G05

1. Introduction

A model selection based bandlet estimator has been introduced by Peyré et al. [23]

to reduce white noise added to images having a geometrical regularity. This estima-

tor projects the observations on orthogonal bandlet vectors selected in a dictionary of
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orthonormal bases. This paper shows that the risk of this estimator is nearly asymptoti-

cally minimax for geometrically regular images. It is also a tutorial on estimation with

general dictionary of orthogonal bases by model selection. It explains with details how

to build a thresholding estimator in an adaptively chosen “best” basis and analyzes its

performance with the model selection approach of Barron et al. [3].

Section 2 describes the statistical setting of the white noise model, and introduces

the model of Cα geometrically regular images. Images in this class, originally pro-

posed by Korostelev and Tsybakov [15], are, roughly, Cα (Hölder regularity α) out-

side a set ofCα curves in [0,1]2. Korostelev and Tsybakov [15] prove that the minimax

quadratic risk over this class, for a Gaussian white noise of variance σ2, has an asymp-

totic decay of the order of σ2α/(α+1). They show that the risk of any possible estimator

cannot decay faster than this rate uniformly for all functions of this class and exhibit

an estimator that achieves this rate. Their estimator relies on the knowledge of the

regularity exponent α and on an explicit detection of the contours, and is not stable

relatively to any image blurring. Later, Donoho [11] overcomes the detection issue by

replacing it with an well-posed optimization problem. Nevertheless, both use a model

of images with sharp edges which limits their applications since most image edges are

not strict discontinuities. They are blurred because of various diffraction effects which

regularize discontinuities by unknown factors.

The model selection based bandlet estimator, which can also be described as a

thresholding estimator in a best bandlet basis, does not have this restriction. It does not

rely on the detection of the precise localization of an edge but only of a looser local

direction of regularity. Furthermore, these directions of regularity are not estimated

directly but indirectly through a best orthogonal basis search algorithm which does

not require to know the regularity parameter α . Section 3 gives a tutorial introduction

of this type of estimators for arbitrary dictionary. This generic class of thresholding

estimators in a best basis selected in a dictionary of orthonormal bases has been already

studied by Donoho and Johnstone [12] and fits into the framework of Barron et al. [3],

[4] and [20]. This (self contained) section recalls the framework of these estimators

and their theoretical performance. For the sake of completeness, a proof of the main

model selection result is given in Appendix.
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Section 4 returns to the specific setting of image processing and applies the results

of the previous section to geometric image estimation. The choice of the representation

(the choice of the dictionary of orthogonal bases) becomes crucial and, after a brief

description of their construction, the use of bandlet bases is justified. The paper is

concluded with Theorem 3 which states the adaptive near asymptotic minimaxity of

the selection model based bandlet estimator for geometrically regular images.

2. Image estimation

2.1. White noise model and acquisition

During the digital acquisition process, a camera measures an analog image f with

a filtering and sampling process corrupted by some noise. More precisely, we will

denote the “noisy” measurement of a camera with N pixels by Yφn , where φn belongs

to a family of N impulse responses of the photo-sensors. Those “noisy” measurements

are often modeled as sums of ideal noiseless measurements and Gaussian noises:

Yφn = 〈 f ,φn〉+σWφn for 0≤ n< N

where (Wφn)0≤n<N is a centered Gaussian vector and σ is a known noise level pa-

rameter. When the family (φn)0≤n<N is an orthonormal family, the Gaussian vector

(Wφn)0≤n<N is often assumed to be white; its components are assumed independents.

For a general family of impulse responses (φn)0≤n<N , this assumption is relaxed and the

correlation between two measures is linked to the correlation between the two corre-

spond impulse responses: more precisely, the covariance matrix of the Gaussian vector

(Wφn)0≤n<N is assumed to be the following Gramm matrix (〈φn,φn′)0≤n,n′≤N .

This situation corresponds to the (classical) white noise statistical model which is

formally described as the observation of a process Y that satisfies

dYx = f (x)dx+σdWx,

whereWx is now the Wiener process. This equation means that one is able to observe

a Gaussian field Yg indexed by functions g ∈ L2([0,1]2) of mean E(Yg) = 〈 f ,g〉 and
covariance E

[
YgYg′

]
= 〈g,g′〉. It generalizes the model of the previous paragraph in
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which the Gaussian field Yg can only be observed for function g in the space VN gener-

ated by the family of impulse responses (φn)0≤n<N . Using a more abstract model that

allows to state the statistical problem in the continuous framework will be important

to consider asymptotics over the noise level σ : smaller noise level will require a better

resolution for the camera measurement process than larger one.

Indeed, this white noise model allows us to define for any space VN spanned by

some functions {φn}0≤n<N a “projection” PVNY of the same observation dY on VN .

When the family {φn}0≤n<N is orthonormal, PVN can be written as

PVNY =
N−1

∑
i=0

Yφnφn

whereas the decomposition coefficients are slightly more involved in the general case.

Nevertheless, this projection depends only on the space VN spanned by the functions

{φn}0≤n<N and not on the functions themselves. In the following, we will work mainly

in term of spaces and thus may assume, with no loss of generality, that {φn}0≤n<N is

an orthogonal family so that the decomposition PVNY = ∑N−1
i=0 Yφnφn applies.

2.2. Minimax risk and geometrically regular images

We study the maximum risk of estimators for images f in a given class with re-

spect to σ . Model classes are often derived from classical regularity spaces (Cα spaces,

Besov spaces,. . . ). This does not take into account the existence of geometrically regu-

lar structures such as edges. This paper uses a geometric image model appropriate for

edges, but not for textures, where images are considered as piecewise regular functions

with discontinuities along regular curves in [0,1]2. This geometrical image model has

been proposed by Korostelev and Tsybakov [15] in their seminal work on image esti-

mation. It is used as a benchmark to estimate or approximate images having some kind

of geometric regularity (Donoho [11], Shukla et al. [24],...). An extension of this model

that incorporates a blurring kernel h has been proposed by Le Pennec and Mallat [18]

to model the various diffraction effects. The resulting class of images, the one studied

in this paper, is the set of Cα geometrically regular images specified by the following

definition.

Definition 1. A function f ∈ L2([0,1]2) is Cα geometrically regular over [0,1]2 if
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• f = f̃ or f = f̃ ⋆ h with f̃ ∈ Cα(Λ) for Λ = [0,1]2−{Cγ}1≤γ≤G,

• the blurring kernel h isCα , compactly supported in [−s,s]2 and ‖h‖Cα ≤ s−(2+α),

• the edge curves Cγ are C
α and do not intersect tangentially if α > 1.

2.3. Edge based estimation

Korostelev and Tsybakov [15] have built an estimator that is asymptotically mini-

max for geometrically regular functions f , as long as there is no blurring and hence that

f = f̃ . With a detection procedure, they partition the image in regions where the image

is either regular or contains a “boundary fragment”, a subpart of a single discontinuity

curve. In each region, they use either an estimator tailored to this “boundary fragments”

or a classical kernel estimator adapted to regular regions. This yields a global estimate

F of the image f . If the f is Cα outside the boundaries and if the parametrization of

the curve is also Cα then there exists a constantC such that

∀σ , E
[
‖ f −F‖2

]
≤Cσ

2α
α+1 .

This rate of convergence achieves the asymptotic minimax rate for uniformlyCα func-

tions and thus the one for Cα geometrically regular functions that includes this class.

This means that sharp edges do not alter the rate of asymptotic minimax risk. However,

this estimator is not adaptive relatively to the Holder exponent α that must be known

in advance. Furthermore, it uses an edge detection procedure that fails when the image

is blurred or when the discontinuity jumps are not sufficiently large.

Donoho [11] and Shukla et al. [24] reuse the ideas of “boundary fragment” under

the name “horizon model” to construct a piecewise polynomial approximation of im-

ages. They derive efficient estimators optimized for α ∈ [1,2]. These estimators use

a recursive partition of the image domain in dyadic squares, each square being split

in two parts by an edge curve that is a straight segment. Both optimize the recursive

partition and the choice of the straight edge segment in each dyadic square by mini-

mizing a global function. This process leads to an asymptotically minimax estimator

up to a logarithmic factor which is adaptive relatively to the Holder exponent as long

as α ∈ [1,2].
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Korostelev and Tsybakov [15] as well as Donoho [11] and Shukla et al. [24] rely on

the sharpness of image edges in their estimators. In both cases, the estimator is chosen

amongst a family of images that are discontinuous across parametrized edges, and

these estimators are therefore not appropriate when the image edges are blurred. We

will consider estimators that do not have this restriction: they project the observation

on adaptive subspaces in which blurred as well as sharp edges are well represented.

They rely on two ingredients: the existence of bases in which geometrical images

can be efficiently approximated and the existence of a mechanism to select, from the

observation, a good basis and a good subset of coefficients onto which it suffices to

project the observation to obtain a good estimator. We focus first on the second issue.

3. Projection Estimator and Model Selection

The projection estimators we study are decomposed in two steps. First, a linear

projection reduces the dimensionality of the problem by projecting the signal in a finite

dimensional space. This first projection is typically performed by the digital acqui-

sition device. Then, a non-linear projection estimator refines this projector by repro-

jecting the resulting finite dimensional observation in a space that is chosen depending

upon this observation. This non-linear projection is obtained with a thresholding in a

best basis selected from a dictionary of orthonormal bases. Best basis algorithms for

noise removal have been introduced by Coifman and Wickerhauser [9]. As recalled

by Candès [5], their risks have already been studied by Donoho and Johnstone [12]

and are a special case of the general framework of model selection proposed by Birgé

and Massart [4]. Note that Kolaczyk and Nowak [14] have studied a similar problem

in a slightly different setting. We recall in this section the framework of model selec-

tion and state a selection model theorem (Theorem 1) that is the main statistical tool

to prove the performance on the model selection based bandlet estimator. This section

is intended as a self contained tutorial presentation of these best basis estimators and

their resulting risk upper bounds and contains no new results. Nevertheless, a simple

(novel) proof of the main result with non optimal constants is given in Appendix.

6



3.1. Approximation space VN and further projection

The first step of our estimators is a projection in a finite dimension space VN

spanned by an orthonormal family {φn}0≤n<N. The choice of the dimension N and

of the space VN depends on the noise level σ but should not depend on the function f

to be estimated. Assume for now that VN is fixed and thus that we observe PVNX . This

observation can be decomposed into PVN f +σWVN where WVN is a finite dimensional

white noise on VN .

Our final estimator is a reprojection of this observation PVNY onto a subspace M ⊂
VN which may (and will) depend on the observation: the projection based estimator

PMPVNY = PMX . The overall quadratic error can be decomposed in three terms:

‖ f −PMY‖2 = ‖ f −PVN f‖2+ ‖PVN f −PM f‖2+σ2‖PMW‖2.

The first term is a bias term corresponding to the first linear approximation error due

to the projection on VN , the second term is also a bias term which corresponds to the

non linear approximation of PVN f on M while the third term is a “variance” term

corresponding to the contribution of the noise on M .

The dimensionN ofVN has to be chosen large enough so that with high probability,

for reasonable M , ‖ f −PVN f‖2 ≤ ‖PVN f −PM f‖2 + ‖PMW‖2. From the practical

point of view, this means that the acquisition device resolution is set so that the first

linear approximation error due to discretization is smaller than the second non linear

noise related error. Engineers often set N so that both terms are of the same order of

magnitude, to limit the cost in terms of storage and computations. In our white noise

setting, we will explain how to chose N depending on σ .

For a fixedVN , in order to obtain a small error, we need to balance between the two

remaining terms. A space M of large dimension may reduce the second bias term but

will increase the variance term, a space M of small dimension does the opposite. It is

thus necessary to find a trade-off between these two trends, and select a space M to

minimize the sum of those two terms.
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3.2. Model Selection in a dictionary of orthonormal bases

We consider a (not that) specific situation in which the space M is spanned by

some vectors from some orthonormal bases of VN . More precisely, let B = {gn}0≤n<N

be an orthonormal basis ofVN , that may be different from {φn}, we consider spaces M

spanned by a sub-family {gnk}1≤k≤M of M = dim(M ) vectors and the projections of

our observation on those spaces

PMY =
M

∑
k=1

Ygnk
gnk .

Note that this projection, or more precisely its decomposition in the basis {φn}, can be
computed easily from the decomposition of PMY in the same basis.

Instead of choosing a specific single orthonormal basis B, we define a dictionary

DN which is a collection of orthonormal bases in which we choose adaptively the basis

used. Note that some bases of DN may have vectors in common. This dictionary can

thus also be viewed as set {gn} of KN ≥ N different vectors, that are regrouped to

form many different orthonormal bases. Any collection of M vectors from the same

orthogonal basis B ∈ DN generates a space M of dimensionM that defines a possible

estimator PMY of f . Let CN = {Mγ}ΓN
be the family of all such projection spaces.

Ideally we would like to find the space M ∈ CN which minimizes ‖ f −PMY‖. We

want thus to choose a “best” modelM amongst a collection that is we want to perform

a model selection task.

3.3. Oracle Model

As a projection estimator yields an estimation error

‖ f −PMY‖2 = ‖ f −PVN‖2+ ‖PVN −PM f‖2+ ‖PMW‖2 = ‖ f −PM f‖2+ ‖PMW‖2,

the expected error of such an estimator is given by

E
[
‖ f −PMY‖2

]
= ‖ f −PM f‖2+σ2dim(M ) .

The best subspace for this criterion is the one that realizes the best trade-off between

the approximation error ‖ f −PM f‖2 and the complexity of the models measured by

σ2 dim(M ).
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This expected error cannot be computed in practice since we have a single real-

ization of dY (or of PVNY ) . To (re)derive the classical model selection procedure of

Birgé and Massart [4], we first slightly modify our problem by searching for a sub-

space M such that the estimation error obtained by projecting PVNY on this subspace

is small with an overwhelming probability. As in all model selection papers, we use

an upper bound of the estimation error obtained from an upper bound of the energy of

the noise projected on M . Each of the KN projections of the noise on the KN different

vectors in the bases of the dictionary DN is thusWgk gk. Its law is a Gaussian random

variable of variance σ2 along the vector gk. A standard large deviation result proves

that the norms of KN such Gaussian random variables are bounded simultaneously by

T = σ
√
2logKN with a probability that tends to 1 when N increases. Since the noise

energy projected in M is the sum of dim(M ) squared dictionary noise coefficients,

we get ‖PMW‖2 ≤ dim(M ) T 2. It results that

‖ f −PMY‖2 ≤ ‖ f −PM f‖2+ dim(M ) T 2. (1)

over all subspaces M with a probability that tends to 1 as N increases. The estimation

error is small if M is a space of small dimension dim(M ) which yields a small ap-

proximation error ‖ f −PM f‖. We denote by MO ∈ CN the space that minimizes the

estimation error upper bound (1)

MO = arg min
M∈CN

(‖ f −PM f‖2+ dim(M ) T 2).

Note that this optimal space cannot be determined from the observation Y since f is

unknown. It is called the oracle space , hence the O in the notation, to remind this fact.

3.4. Penalized empirical error

To obtain an estimator, it is thus necessary to replace this oracle space by a “best”

space obtained only from the observation PVNY that yields (hopefully) a small estima-

tion error. A first step toward this goal is to notice that since all the spaces M are

included into VN , minimizing

‖ f −PM f‖2+ dim(M ) T 2
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is equivalent to minimizing

‖PVN f −PM f‖2+ dim(M ) T 2.

A second step is to consider the crude estimation of ‖PVN f − PM f‖2 given by the

empirical norm

‖PVNY −PMY‖2 = ‖PVNY‖2−‖PMY‖2.

This may seem naive because estimating ‖PVN f −PM f‖2 with ‖PVNY −PMY‖2 yields
a large error

‖PVNY −PMY‖2−‖PVN f −PM f‖2 = (‖PVNY‖2−‖PVN f‖2)+ (‖PM f‖2−‖PMY‖2),

whose expected value is (N− dim(M ))σ2, with typically dim(M ) ≪ N. However,

most of this error is in the first term on the right hand-side, which has no effect on

the choice of space M . This choice depends only upon the second term and is thus

only influenced by noise projected in the space M of lower dimension dim(M ). The

bias and the fluctuation of this term, and thus the choice of the basis, are controlled by

increasing the parameter T .

We define the best empirical projection estimator P
M̂

as the estimator that mini-

mizes the resulting empirical penalized risk:

M̂ = arg min
M∈CN

‖PVNY −PMY‖2+ dim(M ) T 2 (2)

3.5. Thresholding in a best basis

Finding the best estimator which minimizes (2) may seem computationally un-

tractable because the number of possible spaces M ∈ C is typically an exponential

function of the number KN of vectors in DN . We show that this best estimator may

however be found with a thresholding in a best basis.

Suppose that we impose that M are generated by a subset of vectors from a basis

B ∈ DN . The following (classical) lemma proves that among all such spaces, the best

projection estimator is obtained with a thresholding at T .

Lemma 1. Among all spaces M that are generated by a subset of vectors of an

orthonormal basis B = {gn}0≤n<N of VN , the estimator which minimizes ‖PVNY −
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PMY‖2+ dim(M ) T 2 is the thresholding estimator

PMB,Y,T
Y = ∑

n,|〈Y,gn〉|>T

〈Y,gn〉gn. (3)

Proof. Let M = Span{gn}n∈I with I ⊂ [0,N), as B is an orthonormal basis,

‖Y −PMY‖2+ dim(M ) T 2 = ∑
n/∈I

|〈Y,gm〉|2+∑
n∈I

T 2

which is minimal if I = {n, |〈Y,gn〉|2 > T 2}.

The thresholding estimator (3) projectsY in the spaceMB,Y,T generated by the vec-

tors {gm}|〈Y,gm〉|>T , the vectors of B which produce coefficients above threshold. This

lemma implies that best projection estimators are necessarily thresholding estimators

in some basis. Minimizing ‖PVNY −PMY‖2+dim(M ) T 2 over M ∈ C is thus equiv-

alent to find the basis B̂ of VN which minimizes the thresholding penalized empirical

risk:

B̂ = arg min
B∈DN

‖PVNY −PMB,Y,T
Y‖2+ dim(M ) T 2.

The best space which minimizes the empirical penalized risk in (2) is derived from a

thresholding in the best basis M̂ = M
B̂,T

.

The following theorem, similar to the one obtained first by Barron et al. [3], proves

that the thresholding estimation error in the best basis is bounded by the estimation

error by projecting in the oracle space MO, up to a multiplicative factor.

Theorem 1. There exists an absolute function λ0(K) ≥
√
2 and some absolute con-

stants ε > 0 and κ > 0 such that if we denote CN = {Mγ}Γ the family of projec-

tion spaces generated by some vectors in an orthogonal basis of a dictionary DN and

denote KN be the number of different vectors in DN . Then for any σ > 0, if we let

T = λ
√
log(KN)σ with λ ≥ λ0(KN), then for any f ∈ L2, the thresholding estimator

F = PM
B̂,X ,T

Y in the best basis

B̂ = arg min
B∈DN

‖PVNY −PMB,Y,T
Y‖2+ dim

(
MB,Y,T

)
T 2

satisfies

E
[
‖ f −F‖2

]
≤ (1+ ε)

(
min

M∈CN

‖ f −PM f‖2+ dim(M ) T 2

)
+

κ

KN

σ2.
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For the sake of completion, we propose in Appendix a simple proof of Theorem 1,

inspired by Birgé and Massart [4], which requires only a concentration lemma for the

norm of the noise in all the subspaces spanned by the KN generators of DN but with

worse constants: λ0(K) =
√
32+ 8

log(K)
, ε = 3 and κ = 64. Note that this Theorem

can be deduced from Massart [20] with different (better) constant (and for roughly

λ0(K) >
√
2) using a more complex proof based on subtle Talagrand’s inequalities. It

results that any bound on minM∈CN
‖ f −PM f‖2+ dim(M ) T 2, gives a bound on the

risk of the best basis estimator F .

To obtain a computational estimator, the minimization

B̂ = arg min
B∈DN

‖PVNY −PMB,Y,T
Y‖2+ dim

(
MB,Y,T

)
T 2 ,

should be performed with a number of operations typically proportional to the number

KN of vectors in the dictionary. This requires to construct appropriate dictionaries of

orthogonal bases. Examples of such dictionaries have been proposed by Coifman and

Wickerhauser [9] with wavelet packets or by Coifman and Meyer [8] with local co-

sine bases for signals having localized time-frequency structures. Next section reviews

some possible dictionaries for images and recalls the construction of the dictionary

of bandlet orthogonal bases that is adapted to the estimation of geometrically regular

images.

4. Best basis image estimation and bandlets

4.1. Estimation in a single basis

When the dictionary DN is reduced to a single basis B, and there is thus no basis

choice, Theorem 1 clearly applies and reduces to the classical thresholding Theorem of

Donoho and Johnstone [13]. The corresponding estimator is thus the classical thresh-

olding estimator which quadratic risk satisfies

E
[
‖ f −PMB,Y,T

Y‖2
]
≤ (1+ ε)

(
min

M∈CN

‖ f −PM f‖2+ dim(M ) T 2

)
+

κ

N
σ2

It remains “only” to choose which basis to use and how to define the space VN with

respect to σ .

12



Wavelet bases provide a first family of estimators used commonly in image pro-

cessing. Such a two dimensional wavelet basis is constructed from two real functions,

a one dimensional wavelet ψ and a corresponding one dimensional scaling function φ ,

which are both dilated and translated:

ψ j,k(x) =
1

2 j/2
ψ

(
x− 2 jk

2 j

)
and φ j,k(x) =

1

2 j/2
φ

(
x− 2 jk

2 j

)
.

Note that the index j goes to −∞ when the wavelet scale 2 j decreases. For a suitable

choice of ψ and φ , the family {ψ j,k(x)} j,k is an orthogonal basis of L2([0,1]) and the

following family constructed by tensorization




ψV
j,k(x) = ψV

j,k(x1,x2) = φ j,k1(x1)ψ j,k2(x2),

ψH
j,k(x) = ψH

j,k(x1,x2) = ψ j,k1(x1)φ j,k2(x2),

ψD
j,k(x) = ψD

j,k(x1,x2) = ψ j,k1(x1)ψ j,k2(x2)





( j,k1,k2)

is an orthonormal basis of the square [0,1]2. Furthermore, each space

V j = Span{φ j,k1(x1)φ j,k2(x2)}k1,k2 ,

called approximation space of scale 2 j, admits {ψo
l,k}o,l≥ j,k1,k2 as an orthogonal ba-

sis. The approximation space VN of the previous section coincides with the classical

wavelet approximation space V j when N = 2− j/2.

A classical approximation result ensures that for any function f ∈ Cα , as soon

as the wavelet has more than ⌊α⌋+ 1 vanishing moments, there is a constant C such

that, for any T , minM∈CN
‖PVN f −PM f‖2+dim(M ) T 2 ≤C(T 2)

α
α+1 , and, for any N,

‖PVN f − f‖2 ≤CN−α . For N = 2− j/2 with σ2 = [2 j,2 j+1], Theorem 1 thus implies

E[‖ f −F‖2]≤C(| log(σ)|σ2)
α

α+1 .

This is up to the logarithmic term the best possible rate forCα functions. Unfortunately,

wavelets bases do not provide such an optimal representation for the Cα geometrically

regular functions specified by Definition 1. Wavelets fail to capture the geometrical

regularity of edges: near them, the wavelets coefficients remain large. As explained in

Mallat [19], by noticing that those edges contribute at scale 2 j to O(2− j) coefficients

of orderO(2 j/2), one verifies that the rate of convergence in a wavelet basis decays like

(| log(σ)|σ2)1/2, which is far from the asymptotically minimax rate.
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4.2. Estimation in a fixed frame

No known basis seems able to capture the geometric regularity, however a remark-

ably efficient representationwas introduced by Candès and Donoho [6]. Their curvelets

are not isotropic like wavelets but are more elongated along a preferential direction and

have two vanishing moments along this direction. They are dilated and translated like

wavelets but they are also rotated. The resulting family of curvelets C = {cn}n is not
a basis of L2([0,1]2) but a tight normalized frame of L2(R2). This means that for any

f ∈ L2([0,1]2)

∑
cn∈C

|〈 f ,cn〉|2 = ‖ f‖2

which implies

f = ∑
cn∈C

〈 f ,cn〉cn.

Although this is not an orthonormal basis, the results of Section 3 can be extended

to this setting by replacing the thresholding operator by the search of the space M

spanned by a subset of (cn)0≤n<N , which spans VN , that minimizes

‖PVNY −PMY‖2+T 2 dim(M )

with N = σ−1/2. The error rate for Cα geometrically regular function with α ∈ [1,2] is

E

[
∑
n

‖ f −F‖2
]
≤C(| logσ |σ2)

α
α+1

which is up to the logarithmic factor the minimax rate. Unfortunately, computing this

estimator is complex as it requires to compute all the projections PMY which is not an

easy task. This difficulty may be overcome by working in the coefficient domain. Pro-

jecting the data on the first N = σ−1/2 curvelets with significant intersection with the

unit square and thresholding the remaining coefficients with a threshold λ =
√
logNσ

yields an estimator 〈̃F,cn〉 of the coefficients 〈 f ,cn〉 that satisfies

E

[
∑
n

(〈 f ,cn〉− 〈F,cn〉)2
]
≤C(| logσ |σ2)

α
α+1

with a constant C that depends only on f . Using the inverse frame operator [7], one

obtains an estimator F not necessarily equal to ∑n 〈̃F,cn〉cn that nevertheless satisfies

E

[
∑
n

‖ f −F‖2
]
≤C(| logσ |σ2)

α
α+1
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for Cα geometrically regular functions with α ∈ [1,2].

While the two error bounds of those two estimators are similar, they are deduced

from two different kinds of control. The first one is obtained by a synthesis control: a

control on the error of the best approximation with a given number of coefficients. The

second one is obtained by an analysis control: a control on the number of coefficients

above a threshold. Although the first (synthesis) approach and the second (analysis)

approach are equivalent for orthonormal basis, they are very different for frames.

Other fixed representations, such as the shearlets[16], achieve this optimal rate for

α = 2 by being able to approximateC2 curve with anisotropic elements approximately

aligned with their tangent and having 2 vanishing moments. Unfortunately, no fixed

representation is known to achieve a similar result for α larger than 2; More adaptivity

seems required.

4.3. Dictionary of orthogonal bandlet bases

To cope with higher regularity, Le Pennec and Mallat [17, 18] and Peyré andMallat

[22], inspired by the curvelets and the shearlets that are optimal for C2 geometrically

regular functions, have searched basis elements with a more “curvy” geometry and

more anisotropy to follow Cα edges efficiently, and with more vanishing moments.

Arandiga et al. [2] has proposed a very different approach: a ENO-EA wavelet type

lifting scheme in which the “wavelets” are defined only through the computation of

the corresponding coefficients. Although well understood in the noiseless case[21], the

mathematical analysis of those schemes in presence of noise remains a challenge.

We will thus use the bandlet bases of Peyré and Mallat [22] that are orthogonal

bases whose elements have the required anisotropy, directionality and vanishing mo-

ments. Their construction is based on the observation that even if the wavelet coeffi-

cients are large in the neighborhood of an edge, these wavelets coefficients are regular

along the direction of the edge as illustrated by Fig 1.

To capture this geometric regularity, the key tool is a local orthogonal transform, in-

spired by the work of Alpert [1], that combines locally the wavelets along the direction

of regularity, represented by arrows in the rightmost image of Fig 1, to produce a new

orthogonal basis, a bandlet basis. By construction, the bandlets are elongated along

15



Figure 1: a) a geometrically regular image, b) the associated wavelet coefficients, c) a close-up of wavelet

coefficients in a detail spaceW o
j that shows their remaining regularity, d) the geometrical flow adapted to this

square of coefficients, here it is vertically constant and parametrized by a polynomial curve γ

Figure 2: a) a geometrically regular image b) the corresponding wavelet coefficients c) the quadtree associ-

ated to the segmentation of a detail spaceW o
j . In each square where the image is not uniformly regular, the

flow is shown.

the direction of regularity and have the vanishing moments along this direction. The

(possibly large) wavelets coefficients are thus locally recombined along this direction,

yielding more coefficients of small amplitudes than before.

More precisely, the construction of a bandlet basis of a wavelet multiresolution

space V j = Span{φ j,k1,k2}k1,k2 starts by decomposing this space into detail wavelet

spaces

V j =
⊕

o,l> j

W o
l with W o

l = Span{ψo
l,k1,k2

}k1,k2 .

For any level l and orientation o, the detail spaceW o
l is a space of dimension (2−l)2. Its

coefficients are recombined using the Alpert transform induced by some directions of

regularity. This geometry is specified by a local geometric flow, a vector field meant to

follow the geometric direction of regularity. This geometric flow is further constrained

16



to have a specific structure as illustrated in Fig. 2. It is structured by a partition into

dyadic squares in which the flow, if there exists, is vertically or horizontally constant.

In each square of the partition, the flow being thus easily parametrized by its tangent.

For each choice of geometric flow, a specific orthogonalization process [22] yields

an orthogonal basis of bandlets that have vanishing moments along the direction of

the geometric flow. This geometry should obviously be adapted to each image: the

partition and the flow direction should match the image structures. This choice of

geometry can be seen as an ill posed problem of estimation of the edges or of the

direction of regularity. To avoid this issue, the problem is recasted as a best basis

search in a dictionary. The geometry chosen is the one of the best basis.

The first step is to define a dictionary D(2− j)2 of orthogonal bandlet bases of V j or

equivalently a dictionary of possible geometric flows. Obviously this dictionary should

be finite and this requires a discretization of the geometry. As proved by Peyré and

Mallat [22], this is not an issue: the flow does not have to follow exactly the direction

of regularity but only up to a sufficient known precision. It is indeed sufficient to

parametrize the flow in any dyadic square by the tangent of a polynomial of degree p

(the number of vanishingmoments of the wavelets). The coefficients of this polynomial

can be further quantized. The resulting family of geometric flow in a square is of size

O(2− jp).

A basis of the dictionary D(2− j)2 is thus specified by a set of dyadic squares par-

titions for each details spaces W o
l , l > j, and, for each square of the partition, a

flow parametrized by a direction and one of these O(2− jp) polynomials. The number

of bases in the dictionary D(2− j)2 grows exponentially with 2− j, but the total num-

ber of different bandlets K(2− j)2 grows only polynomially like O(2− j(p+4)). Indeed

the bandlets in a given dyadic square with a given geometry are reused in numerous

bases. The total number of bandlets in the dictionary is thus bounded by the sum

over all O(2−2 j) dyadic squares and all O(2− jp)) choices for the flow of the number

of bandlets in the square. Noticing that (2− j)2 is a rough bound of the number of

bandlets in any subspaces of V j, we obtain the existence of a constant CK such that

2− j(p+4) ≤ K(2− j)2 ≤CK2
− j(p+4).
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4.4. Approximation in bandlet dictionaries

The key property of the bandlet basis dictionary is that it provides an asymptotically

optimal representation ofCα geometrically regular functions. Indeed Peyré and Mallat

[22] proved

Theorem 2. Let α < p where p in the number of wavelet vanishing moments, for any

f Cα geometrically regular function, there exists a real number C such that for any

T > 0 and 2 j ≤ T

min
B∈D

(2− j)2

‖ f −PMB, f ,T
f‖2+ dim

(
MB, f ,T

)
T 2

6CT 2α/(α+1) (4)

where the subspace MB, f ,T is the space spanned by the vectors of B whose inner

product with f is larger than T .

This Theorem gives the kind of control we require in Theorem 1.

For practical applications the possibility to compute efficiently the aboveminimiza-

tion is as important as the bound CT 2α/(α+1) itself. It turns out that a fast algorithm

can be used to find the best basis that minimizes ‖ f −PMB, f ,T
f‖2+dim

(
MB, f ,T

)
T 2 or

equivalently ‖PV j
f −PMB, f ,T

f‖2+dim
(
MB, f ,T

)
T 2. We use first the additive structure

with respect to the subbandW o
l of this “cost” ‖PV j

f −PMB, f ,T
f‖2+ dim

(
MB, f ,T

)
T 2

to split the minimization into several independent minimizations on each subbands. A

bottom-top fast optimization of the geometry (partition and flow) similar to the one

proposed by Coifman and Wickerhauser [9], and Donoho [10] can be performed on

each subband thanks to two observations. Firstly, for a given dyadic square, the limited

number of possible flows is such that the best flow can be obtained with a simple brute

force exploration. Secondly, the hierarchical tree structure of the partition and the addi-

tivity of the cost function with respect to the partition implies that the best partition of

a given dyadic square is either itself or the union of the best partitions of its four dyadic

subsquares. This leads to a bottom up optimization algorithm once the best flow has

been found for every dyadic squares. Note that this algorithm is adaptive with respect

to α: it does not require the knowledge of the regularity parameter to be performed.

More precisely, the optimization algorithm goes as follows. The brute force search

of the best flow is conducted independently over all dyadic squares and all detail spaces
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with a total complexity of order O(2− j(p+4)). This yields a value of the penalized

criterion for each dyadic squares. It remains now to find the best partition. We proceed

in a bottom up fashion. The best partition with squares of width smaller than 2 j+1

is obtained from the best partition with squares of width smaller than 2 j: inside each

dyadic square of width 2 j+1 the best partition is either the partition obtained so far

or the considered square. This choice is made according to the cost computed so far.

Remark that the initialization is straightforward as the best partition with square of size

1 is obviously the full partition. The complexity of this best partition search is of order

O(2−2 j) and thus the complexity of the best basis is driven by the best flow search

whose complexity is of order O(2− j(p+4)), which nevertheless remains polynomial in

2− j.

4.5. Bandlet estimators

Estimating the edges is a complex task on blurred function and becomes even much

harder in presence of noise. Fortunately, the bandlet estimator proposed by Peyré et al.

[23] do not rely on such a detection process. The chosen geometry is obtained with the

best basis selection of the previous section. This allows one to select an efficient basis

even in the noisy setting.

Indeed, combining the bandlet approximation result of Theorem 2 with the model

selection results of Theorem 1 proves that the selection model based bandlet estimator

is near asymptotically minimax for Cα geometrically regular images.

For a given noise level σ , one has to select a dimension N = (2− j)2 and a threshold

T . The best basis algorithm selects then the bandlet basis B̂ amongst DN = D(2− j)2

that minimizes

‖PVNY −PMB,Y,T
Y‖2+T 2 dim

(
MB,Y,T

)

and the model selection based estimate is F = PMB,Y,T
Y . We should now specify the

choice of N = (2− j)2 and T in order to be able to use Theorem 1 and Theorem 2 to

obtain the near asymptotic minimaxity of the estimator. On one hand, the dimension

N should be chosen large enough so that the unknown linear approximation error ‖ f −
PVN‖2 is small. One the other hand, the dimension N should not be too large so that the

total number of bandlets KN , which satisfies
√
N
(p+4) ≤ KN ≤CK

√
N
(p+4)

, imposing a

19



lower bound on the value of the threshold remains small. For the sake of simplicity, as

we consider an asymptotic behavior, we assume thatσ is smaller than 1/4. This implies

that it exists j< 0 such that σ ∈ (2 j−1,2 j] The following theorem proves that choosing

N = 2−2 j and T = λ̃
√
| logσ |σ with λ̃ large enough yields a nearly asymptotically

minimax estimator.

Theorem 3. Let α < p where p in the number of wavelet vanishing moments and

let K0 ∈ N∗ and λ̃ ≥
√
2(p+ 4)supK≥K0

λ0(K). For any Cα geometrically regular

function f , there exists C > 0 such that for any

σ ≤min(
1

4
,max(CK ,K0/2)

−1/(p+4)),

if we let N = 2−2 j with j such that σ ∈ (2 j−1,2 j] and T = λ̃
√
| logσ |σ , the estimator

F = PM
B̂,Y,T

Y obtained by thresholding PVNY with a threshold T in the basis B̂ of DN

that minimizes

‖PVNY −PMB,Y,T
Y‖2+T 2 dim

(
MB,Y,T

)

satisfies

E
[
‖ f −F‖2

]
≤C(| logσ |σ2)

α
α+1 .

Theorem 3 is a direct consequence of Theorem 1 and Theorem 2,

Proof. For any σ ∈ (2 j−1,2 j], observe that 2− j(p+4) ≤KN =K(2− j)2 ≤CK2
− j(p+4) and

thus (2σ)−(p+4) ≤ KN ≤ CKσ−(p+4). The restriction on σ further implies then that

KN ≥ K0 and KN ≤ σ−2(p+4). As λ̃ ≥
√
2(p+ 4)supK≥K0

λ0(K), T = λ̃
√
| logσ |σ ≥

λ
√
log(KN)σ with λ ≥ λ0(KN) so that Theorem 1 applies. This yields

E
[
‖ f −F‖2

]
≤ (1+ ε) min

M∈CN

(
‖ f −PM f‖2+T2 dim(M )

)
+

κ

KN

σ2 . (5)

Now as T ≥ 2 j, Theorem 2 applies and there is a constantC independent of T such that

min
M∈CN

(
‖ f −PM f‖2+T 2 dim(M )

)
≤C(T 2)α/(α+1) .

Plugging this bound into (5) gives the result.

The estimate F =PM
B̂,T

Y is computed efficiently by the same fast algorithmused in

the approximation setting without requiring the knowledge of the regularity parameter
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α . The model selection based bandlet estimator is thus a tractable adaptive estimator

that attains, up to the logarithmic term, the best possible asymptoticminimax risk decay

for Cα geometrically regular function.

Although Theorem 3 applies only to Cα geometrically regular functions, one can

use the bandlet estimator with many kinds of images. Indeed for any function for

which a theorem similar to Theorem 2 exists, the proof of Theorem 3 yields a control

on the estimation risk. An important case is the Besov bodies. As amongst the bandlets

bases there is the classical wavelet basis, any Besov function can be approximated

optimally in this specific “bandlet” basis. The bandlet estimate will thus provide, up to

a logarithmic term, an optimal asymptotic minimax rate.

To illustrate the good numerical behavior of the bandlet estimator, we finish this

article by some experiments extracted from [23] and completed by a comparison with

a (translation invariant) curvelet estimator. Table 1 shows the improvement due to the

bandlet representation by comparing the PSNR for an optimized thresholding method

in a wavelet representation, a curvelet representation and a bandlet representation. As

expected, the bandlet estimator yields the best results. This quantitative improvement

translates into a better visual quality as illustrated in Figure 3. Both curvelets and

bandlets preserve much more geometric structures than wavelets. Curvelets are even

better than bandlets to preserve the geometry of true edges but at the price of introduc-

ing some geometric artifacts mostly parallel to true edges as visible in the Polygons

example but also in random direction due to noise shaping as visible in the top part of

Lena’s hat. This effect is nevertheless less visible in natural images than in artificial

ones because of texture masking effect.

Acknowledgement: The authors would like to thank G. Peyré which has imple-

mented all the numerical schemes presented here.

Appendix A. Proof of Theorem 1

Concentration inequalities are at the core of all the selection model estimators. Es-

sentially, the penalty should dominate the random fluctuation of the minimized quan-

tity. The key lemma, Lemma 2, uses a concentration inequality for Gaussian variable
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Polygons

Original Noisy

Wavelets Curvelets Bandlets

Lena (closeup)

Original Noisy

Wavelets Curvelets Bandlets

Figure 3: Visual comparison of the different estimators
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Image Noise Wavelet Curvelet Bandlet

Polygons 22 32.73 32.36 34.56

Lena 22 28.15 28.29 28.7

Barbara 22 26.57 27.49 28.14

Peppers 22 27.85 27.74 28.49

Table 1: PSNR for the wavelet, curvelet and bandlet estimators for a geometrical image (Polygons given in

Figure 3) and three classical images (Lena, Barbara and Peppers) with a noise level of 22dB.

to ensure, with high probability, that the noise energy is small simultaneously in all the

subspaces MI spanned by a subset I of the KN different vectors, denoted by gk, of DN .

Lemma 2. For all u≥ 0, with a probability greater than or equal to 1− 2/KNe
−u,

∀I⊂{1, . . . ,KN} and MI = Span{gk}k∈I, ‖PMI
W‖≤

√
MI+

√
4log(KN)dim(MI)+ 2u

where dim(MI) is the dimension of MI .

Proof. The key ingredient of this proof is a concentration inequality. Tsirelson’s Lemma[25]

implies that for any 1-Lipschitz function φ : Cn →C (|φ(x)−φ(y)| ≤ ‖x− y‖) ifW is

a Gaussian standard white noise in Cn then

P{φ(W )≥ E [φ(W )]+ t} ≤ e−t
2/2 .

For any space M , f 7→ ‖PM f‖ is 1-Lipschitz. Note that one can first project f

into the finite dimensional space VN without modifying the norm. We can thus apply

Tsirelson’s Lemma with t =
√
4log(KN)dim(M )+ 2u and obtain

P
{
‖PMW‖ ≥ E [‖PMW‖]+

√
4log(KN)dim(M )+ 2u

}
≤ K

−2dim(M )
N e−u .

Now as E [‖PMW‖]≤ (E
[
‖PMW‖2

]
)1/2 =

√
dim(M ), one derives

P
{
‖PMW‖ ≥

√
dim(M )+

√
4log(KN)dim(M )+ 2u

}
≤ K

−2dim(M )
N e−u .
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Now

P
{
∃I ⊂ {1, . . . ,KN},‖PMI

W‖ ≥
√
dim(MI)+

√
4log(KN)dim(MI)+ 2u

}

≤ ∑
I⊂{1,...,KN}

P
{
‖PMI

W‖ ≥
√
dim(MI)+

√
4log(KN)dim(MI)+ 2u

}

≤ ∑
I⊂{1,...,KN}

K
−2dim(MI )
N e−u

≤
KN

∑
d=1

(
KN

d

)
K−2d
N e−u ≤

KN

∑
d=1

K−d
N e−u

≤ K−1
N

1−K−1
N

e−u

and thus

P
{
∃I ⊂ {1, . . . ,KN},‖PMI

W‖ ≥
√
dim(MI)+

√
4log(KN)dim(MI)+ 2u

}

≤ 2

KN

e−u

The proof of Theorem 1 follows from the definition of the best basis, the oracle

subspace and the previous Lemma.

Proof of Theorem 1. Recall, that PVNY = PVN f +σPVNW ∈ VN with PVNW a Gaussian

white noise. By construction, the thresholding estimate is PM
B̂,Y,T

Y where

B̂ = arg min
B∈DN

‖PVNY −PMB,Y,T
Y‖2+ dim

(
MB,Y,T

)
T 2 .

To simplify the notation, we denote by M̂ and dim
(
M̂

)
the corresponding space and

its dimension.

Denote now dim(M0) the dimension of the oracle subspace MO that has been

defined as the minimizer of

‖PVN f −PM f‖2+ dim(M ) T 2 .

By construction,

‖PVNY −P
M̂
Y‖2+λ 2 log(KN)σ

2 dim
(
M̂

)
≤ ‖PVNY −PMO

f‖2+λ 2 log(KN)σ
2 dim(M0) .
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Using

‖PVNY −P
M̂
Y‖2 = ‖PVNY −PVN f‖2+‖PVN f −P

M̂
Y‖2+2〈PVNY −PVN f ,PVN f −P

M̂
Y 〉

and a similar equality for ‖PVNY −PMO
f‖2, one obtains

‖PVN f −P
M̂
Y‖2+λ 2 log(KN)σ

2 dim
(
M̂

)
≤ ‖PVN f −PMO

f‖2+λ 2 log(KN)σ
2 dim(M0)

+ 2〈PVNY −PVN f ,PM̂
Y −PMO

f 〉

One should now focus on the bound on the scalar product :

|2〈PVNY −PVN f ,PM̂
Y −PMO

f 〉|

= |2〈σP
M̂+MO

W,P
M̂
Y −PMO

f 〉|

≤ 2σ‖P
M̂+MO

W‖(‖P
M̂
Y −PVN f‖+ ‖PVN f −PMO

f‖)

and, using Lemma 2, with a probability greater than or equal to 1− 2
KN

e−u

≤ 2σ

(√
dim

(
M̂

)
+ dim(M0)+

√
4log(KN)(dim

(
M̂

)
+ dim(M0))+ 2u

)

× (‖P
M̂
Y −PVN f‖+ ‖PVN f −PMO

f‖)

applying 2xy≤ β−2x2+β 2y2 successively with β = 1
2
and β = 1 leads to

|2〈PVNY −PVN f ,PM̂
Y −PMO

f 〉|

≤
(
1

2

)−2

2σ2(dim
(
M̂

)
+ dim(M0)+ 4log(KN)(dim

(
M̂

)
+ dim(M0))+ 2u)

+

(
1

2

)2

2(‖P
M̂
Y −PVN f‖2+ ‖PVN f −PMO

f‖2) .

Inserting this bound into

‖PVN f −P
M̂
Y‖2+λ 2 log(KN)σ

2 dim
(
M̂

)
≤ ‖PVN f −PMO

f‖2+λ 2 log(KN)σ
2 dim(M0)

+ |2〈PVNY −PVN f ,PM̂
Y −PMO

f 〉|

yields

1

2
‖PVN f −P

M̂
Y‖2 ≤ 3

2
‖PVN f −PMO

f‖2+σ2(λ 2 log(KN)+ 8(1+ 4log(KN)))dim (M0)

+σ2(8(1+ 4log(KN))−λ 2 log(KN))dim
(
M̂

)
+ 16σ2u
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So that if λ 2 ≥ 32+ 8
log(KN )

‖PVN f −P
M̂
Y‖2 ≤ 3‖PVN f −PMO

f‖2+ 4σ2λ 2 log(KN)dim(M0)+ 32σ2u

which implies

‖PVN f −P
M̂
Y‖2 ≤ 4(‖PVN f −PMO

f‖2+σ2λ 2 log(KN)dim(M0))+ 32σ2u

where this result holds with probability greater than or equal to 1− 2
KN

e−u.

Recalling that this is valid for all u≥ 0, one has

P
{
‖PVN f −P

M̂
Y‖2− 4(‖PVN f −PMO

f‖2+σ2λ 2 log(KN)dim(M0))≥ 32σ2u
}
≤ 2

KN

e−u

which implies by integration over u

E
[
‖PVN f −P

M̂
Y‖2− 4(‖PVN f −PMO

f‖2+σ2λ 2 log(KN)dim(M0))
]
≤ 32σ2 2

KN

that is the bound of Theorem 1

E
[
‖PVN f −P

M̂
Y‖2

]
≤ 4(‖PVN f −PMO

f‖2+σ2λ 2 log(KN)dim(M0))+ 32σ2 2

KN

up to ‖ f −PVN f‖2 which can be added on both size of the inequality.
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