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Abstract. Finding efficient geometric representations of images is a central issue to improve im-
age compression and noise removal algorithms. We introduce bandelet orthogonal bases and frames
that are adapted to the geometric regularity of an image. Images are approximated by finding a
best bandelet basis or frame that produces a sparse representation. For functions that are uniformly
regular outside a set of edge curves that are geometrically regular, the main theorem proves that
bandelet approximations satisfy an optimal asymptotic error decay rate. A bandelet image compres-
sion scheme is derived. For computational applications, a fast discrete bandelet transform algorithm
is introduced, with a fast best basis search which preserves asymptotic approximation and coding
error decay rates.
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1. Introduction. When a function defined over [0, 1]2 has singularities that
belong to regular curves, one may take advantage of this geometrical regularity to
optimize its approximation from M parameters. Most current procedures such as
M -term separable wavelet approximations are locally isotropic and thus can not take
advantage of such geometric regularity. This paper introduces a new class of bases,
with elongated multiscale bandelet vectors that follow the geometry, to optimize the
approximation.

For functions f that are Hölderian of order α over [0, 1]2, M -term separable
wavelet approximations fM satisfy ‖f − fM‖2 ≤ CM−α where ‖ · ‖ stands for the
L2 norm. The decay exponent α is optimal in the sense that no other approximation
scheme can improve it for all such functions. If f is Hölderian of order α ≥ 1 over
[0, 1]2−{Cγ}1≤γ≤G where the Cγ are finite length curves along which f is discontinuous
then its M -term wavelet approximation satisfies only ‖f − fM‖2 ≤ C M−1. The
existence of discontinuities drives entirely the decay of the approximation error. If
the Cγ are regular curves, several approaches [1, 6, 8, 18] have already been proposed
to improve the decay of this wavelet approximation error, for 1 ≤ α ≤ 2. When
α ≥ 1 is unknown, the issue addressed by this paper is to find an approximation
scheme that is asymptotically as efficient as if f was Hölderian of order α over its
whole support, and to derive an image compression scheme. This is particularly
important to approximate and compress images, where the contours of objects create
edge transitions along piecewise regular curves.

Section 2 reviews non-linear approximation results for piecewise regular images
including edges. In the neighborhood of an edge, the image gray levels vary regu-
larly in directions parallel to the edge, but they have sharp transitions across the
edge. This anisotropic regularity is specified by a geometric flow that is a vector field
that indicates local direction of regularity. Section 3 constructs bandelets, which are
anisotropic wavelets that are warped along this geometric flow, and bandelet orthonor-
mal bases in bands around edges. We study the approximation in bandelet bases of
functions including edges over such bands. Bandelets frames of L2[0, 1]2 are defined
in Section 4.1 as a union of bandelet bases in different bands. A dictionary of ban-
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delet frames is constructed in Section 4.2 with dyadic square segmentations of [0, 1]2

and parameterized geometry flows. The main theorem of Section 4.2 proves that a
best bandelet frame obtained by minimizing an appropriate Lagrangian cost function
in the bandelet dictionary yields asymptotically optimal approximations of piecewise
regular functions. If f is Hölderian of order α ≥ 1 over [0, 1]2 − {Cγ}1≤γ≤G where
the Cγ are Hölderian of order α then the main theorem proves that an approximation
from M parameters in a best bandelet frame satisfies ‖f − fM‖2 ≤ C M−α.

To compress images in bits, an image transform code is defined in Section 5.
It is proved that a best bandelet frame yields a distortion rate that nearly reaches
the Kolmogorov asymptotic lower bound, up to a logarithmic factor. For numerical
implementations over digital images, Section 6.1 discretizes bandelet bases and frames.
Section 6.2 describes a fast algorithm that finds a best discrete bandelet frame with
an approximation error that decays like M−α up to a logarithmic factor.

2. Geometric Image Model. We begin by establishing a mathematical model
for geometrically regular images using the notion of edge. This model incorporates
the fact that the image intensity is not necessarily singular at edge locations, which
is why edge detection is an ill-posed problem. We then review existing constructive
procedures to approximate such geometrically regular functions.

Functions that are regular everywhere outside a set of regular edge curves define
a first simple model of geometrically regular functions. Let Cα(Λ) be the space of
Hölderian functions of order α over Λ ⊂ Rn defined for α > 0:

Cα(Λ) =





f, Rn → R : ∀|β| = TαU, ∂|β|

∂x
β1
1 ···∂x

βn
n

f exists and satisfies

sup(x,y)∈Λ2 | ∂|β|

∂x
β1
1 ···∂x

βn
n

f(x)− ∂|β|

∂x
β1
1 ···∂x

βn
n

f(y)| × ‖x− y‖TαU−α <∞





(2.1)

with

TαU =

{
bαc if α /∈ N
α− 1 if α ∈ N

and bαc the integer just below α. For α integer, the space Cα is slightly larger than
the space of function having bounded derivatives up to order α. The norm ‖f‖Cα(Λ)

used through this paper is defined by:

‖f‖Cα(Λ) = max




sup
x∈Λ

max
|β|≤TαU

∂|β|

∂xβ1

1 · · · ∂xβnn
f(x),

sup
(x,y)∈Λ2

max
|β|=TαU

| ∂|β|

∂xβ1

1 · · · ∂xβnn
f(x)− ∂|β|

∂xβ1

1 · · · ∂xβnn
f(y)| × ‖x− y‖TαU−α




(2.2)

We say that an edge curve is Hölderian of order α if the coordinates in R2 of the
points along this curve has a parameterization by arc length which is Hölderian of
order α. An image model with geometrically regular edges is obtained by imposing
that f ∈ Cα(Λ) for Λ = [0, 1]2 − {Cγ}1≤γ≤G, where the Cγ are Hölderian of order
α edge curves. For most images, this model is too simplistic because most often the
image intensity has a sharp variation but is not singular across an edge. In particular,
discontinuities of the image intensity created by occlusions in the visual scene are
blurred by optical diffraction effects. This blurring effects along edges can be modeled
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through a convolution with an unknown kernel of compact support h(x). This means
that we can write f(x) = f̃ ? h(x) where f̃ ∈ Cα(Ω) for Ω = [0, 1]2 − {Cγ}1≤γ≤G.

When f 6= f̃ , finding from f the exact locations of the edges Cγ is an ill-posed
problem, specially since h is unknown. The difficulty to locate blurred edges is well
known in image processing [3]. The goal of this paper is to find an approximation fM
from M parameters which satisfies

∀M > 0 , ‖f − fM‖2 ≤ CM−α , (2.3)

with a constant C that does not depend upon the blurring kernel h.
A wavelet approximation decomposes f in an orthonormal wavelet basis and

reconstructs fM from a partial sum of M wavelets corresponding to the largest am-
plitude coefficients. Over a class of functions f whose total variation are uniformly
bounded then one can prove [5] that

‖f − fM‖2 ≤ C M−1 . (2.4)

This result applies to functions having discontinuities along regular edges. However,
wavelet bases are unable to take advantage of existing geometric regularity in order
to improve the asymptotic error decay M−1.

Many beautiful ideas have already been studied to find approximation schemes
that take into account geometric image regularity. A surprising result by Candès and
Donoho [1] shows that it is not necessary to estimate the image geometry to obtain
efficient approximations. A curvelet frame is composed of multiscale elongated and
rotated wavelet type functions. Candès and Donoho prove [2] that if α = 2 then an
approximation fM with M curvelets satisfies

‖f − fM‖2 ≤ CM−2 (log2M)3 . (2.5)

Up to the (log2M)3 factor, this approximation result is thus asymptotically optimal
for α = 2. However, it is not adaptive in α in the sense that the optimal decay rate
M−α is not obtained when α < 2 or α > 2 [8].

Instead of choosing a priori a basis to approximate f , one can rather adapt the
approximation scheme to the image geometry. For example, one can construct an
approximation fM which is piecewise linear over an optimized triangulation including
M triangles and satisfies ‖f−fM‖2 ≤ CM−2. This requires to adapt the triangulation
to the edge geometry and to the blurring scale [12, 7]. However, there is no known
polynomial complexity algorithm which computes such an approximation fM with
an error that always decays like M−2. Incorporating an unknown blurring kernel in
the geometric model makes the problem much more difficult. Indeed, smooth edges
are more difficult to detect than sharp singularities and the triangulation must be
adapted to size of the blurring to approximate precisely the image transitions along
the edges.

Most adaptive approximation schemes that have been developed so far can effi-
ciently approximate geometrically regular images only if the edges are singularities,
meaning that h = δ. In particular, many image processing algorithms have been
developed to construct such approximations by detecting edges and constructing reg-
ular approximations between the edges where the image is uniformly regular [17]. To
obtain fast polynomial time algorithms, Donoho introduced multiscale strategies to
approximate the image geometry. Dictionaries constructed with wedgelets are used
to compute approximations of functions that are C2 away from C2 edges[9]. The
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approximation bound ‖f − fM‖2 ≤ CM−α holds only for 1 ≤ α ≤ 2, and if there
is no blurring (h = δ). Wakin et al.[18] propose a compression scheme that mixes
the wedgelets and the wavelets to obtain better practical approximation results while
following a similar geometry optimization scheme. A different strategy developed
by Cohen and Matei [6] uses a non-linear subdivision scheme to construct an ap-
proximation fM that can reach a similar error decay bound, if the image has sharp
discontinuities along C2 edges.

The goal of this paper is to find a approximation fM from M parameters that
satisfies ‖f − fM‖2 ≤ CM−α for any α ≥ 1 and any blurring kernel h.

3. Approximation in Orthonormal Bandelet Bases.

3.1. Geometric Flow and Bandelet Bases. An image having geometrically
regular edges, as in the model of Section 2, has sharp transitions when moving across
edges but has regular variations when moving parallel to these edges. This displace-
ment parallel to edges can be characterized by a geometric flow which is a field of
parallel vectors that give the local direction in which f has regular variations. Ban-
delet orthonormal bases are constructed by warping anisotropic wavelets bases with
this geometric flow.

A geometric flow is a vector field ~τ (x1, x2) which gives directions in which f has
regular variations in the neighborhood of each (x1, x2). In the neighborhood of an
edge, the flow is typically parallel to the tangents of the edge curve. To construct an
orthogonal basis with a geometric flow, we shall impose that the flow is locally either
parallel in the vertical direction and hence constant in this direction or parallel in the
horizontal direction. To simplify the explanations, we shall first consider horizontal
or vertical horizon models [9] (or boundary fragments [13]), which are functions f
that include a single edge C whose tangents have an angle with the horizontal or
vertical that remains smaller than π/3, so that C can be parameterized horizontally
or vertically by a function g.

Suppose that f is a horizontal horizon model. We define a vertically parallel flow
whose angle with the horizontal direction is smaller than π/3. Such a flow can be
written:

~τ (x1, x2) = ~τ (x1) = (1, g′(x1)) with |g′(x1)| ≤ 2 . (3.1)

A flow line is an integral curve of the flow, whose tangent at (x1, x2) is collinear to
~τ (x1, x2). Let g(x) a primitive of g′(x) defined by g(x) =

∫ x
0
g′(x) dx, that we shall call

flow integral. Flow lines are set of points (x1, x2) ∈ Ω which satisfy x2 = g(x1) + cst.

A band B parallel to this flow is defined by:

B =
{

(x1, x2) : x1 ∈ [a1, b1], x2 ∈ [g(x1) + a2, g(x1) + b2]
}

. (3.2)

The band height a2 and b2 are chosen so that a neighborhood of C is included in B,
as illustrated in Figure 3.1.

If the flow directions are sufficiently parallel to the edge directions then f(x) has
regular variations along each flow line (x1, g(x1) + cst). As a consequence, Figure 3.2
shows that the warped image

Wf(x1, x2) = f(x1, x2 + g(x1)) , (3.3)
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Fig. 3.1. Horizontal horizon model with a flow induced by the edge and the corresponding band

has regular variations along the horizontal lines (x2 constant), in the rectangle ob-
tained by warping the band B:

WB = {(x1, x2) : (x1, x2 + g(x1)) ∈ B} = {(x1, x2) : x1 ∈ [a1, b1], x2 ∈ [a2, b2]} .
(3.4)

B

W

WB

Fig. 3.2. A band B and its warped band WB

If Ψ(x1, x2) is a function having vanishing moments along x1 for x2 fixed, since
Wf(x1, x2) is regular along x1, the resulting inner product 〈Wf,Ψ〉 will be small.
Note that

〈Wf,Ψ〉 = 〈f,W ∗Ψ〉 , (3.5)

whereW ∗ is the adjoint of the operatorW defined in (3.3). This suggests decomposing
f over the warped image by W ∗ of a basis having vanishing moments along x1.
Observe then that

W ∗f(x1, x2) = W−1f(x1, x2) = f(x1, x2 − g(x1)) . (3.6)

Since W is an orthogonal operator, an orthonormal family warped with W ∗ = W−1

remains orthonormal. By inverse warping, an orthogonal wavelet basis of the rectangle
WB yields thus an orthogonal basis over the band B with basis functions having
vanishing moments along the flow lines.

A separable wavelet basis is defined from one-dimensional wavelet ψ(t) and a
scaling function φ(t), that are here chosen compactly supported, which are dilated
and translated [15, 16]:

ψj,m(t) =
1√
2j
ψ
( t− 2jm

2j

)
and φj,m(t) =

1√
2j
φ
( t− 2jm

2j

)
. (3.7)
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Following [15], the index j goes to −∞ when the wavelet scale 2j decreases. In this
paper, j is thus typically a negative integer. The family of separable wavelets

{
φj,m1(x1)ψj,m2(x2) , ψj,m1(x1)φj,m2(x2)

, ψj,m1(x1)ψj,m2(x2)

}

(j,m1,m2)∈IWB

(3.8)

defines an orthonormal basis over the rectangle WB, if one modifies appropriately the
wavelets whose support intersect the boundary of WB [4]. The index set IWB depends
upon the width and length of the rectangle WB. The wavelet construction is slightly
modified to cope with really anisotropic rectangle : it is started with scaling function
of size of order the largest dimension instead of the smallest dimension. This basis
could thus already include some anisotropic functions. This ensures that a polynomial
on a rectangle could always be reproduced with a fixed number of coefficients.

Since W is orthogonal, applying its inverse to each of the wavelets (3.8) yields an
orthonormal basis of L2(B), that is called a warped wavelet basis :

{
φj,m1(x1)ψj,m2(x2 − g(x1)) , ψj,m1(x1)φj,m2(x2 − g(x1))

, ψj,m1(x1)ψj,m2(x2 − g(x1))

}

(j,m1,m2)∈IWB

.

(3.9)

Warped wavelets are separable along the x1 variable and along the x′2 = x2 − g(x1)
variable, so that for a given x′2 one follows the geometric flow lines within the band
B.

The wavelet ψ(t) has p ≥ α vanishing moments but φ(t) has no vanishing mo-
ments. As a consequence, the separable wavelets ψj,m1(x1)φj,m2(x2) and ψj,m1(x1)ψj,m2(x2)
have vanishing moments along x1 but not φj,m1(x1)ψj,m2(x2). However, {φj,m1(x1)}m1

is an orthonormal basis of a multiresolution space which also admits an orthonor-
mal basis of wavelets {ψl,m1(x1)}l>j,m1 that have vanishing moments, besides a con-
stant number of scaling functions. This suggests replacing the orthogonal family
{φj,m1(x1)ψj,m2(x2)}j,m1,m2 by the family {ψl,m1(x1)ψj,m2(x2)}j,l>j,m1,m2 which gen-
erates the same space. This is called a bandeletization.

After applying the inverse warpingW−1 the resulting functions ψl,m1(x1)ψj,m2(x2−
g(x1)) are called bandelets because their support is parallel to the flow lines and is
more elongated (2l > 2j) in the direction of the geometric flow. Inserting these ban-
delets in the warped wavelet basis (3.9) yields a bandelet orthonormal basis of L2(B):

{
ψl,m1(x1)ψj,m2(x2 − g(x1)) , ψj,m1(x1)φj,m2(x2 − g(x1))

, ψj,m1(x1)ψj,m2(x2 − g(x1))

}

j,l>j,m1,m2

.

(3.10)

Suppose now that f is a vertical horizon model, with an edge along a curve C
whose tangents have an angle smaller than π/3 with the vertical direction. We then
define a geometric flow ~τ (x1, x2) that is parallel in the horizontal direction and which
has an angle smaller than π/3 with the vertical direction:

~τ (x1, x2) = ~τ (x2) = (g′(x2), 1) with |g′(x2)| ≤ 2 . (3.11)

Flow lines are points (x1, x2) with x1 = g(x2) + cst.
We define a band which is parallel to the geometric flow:

B =
{

(x1, x2) : x1 ∈ [g(x2) + a1, g(x2) + b1] , x2 ∈ [a2, b2]
}
. (3.12)
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The width `1 = b1−a1 of the band is adjusted so that a neighborhood of C is included
in B. Similarly to the previous case, the warped wavelet basis of L2(B) is then defined
by:

{
φj,m1(x1 − g(x2))ψj,m2(x2) , ψj,m1(x1 − g(x2))φj,m2(x2)

, ψj,m1(x1 − g(x2))ψj,m2(x2)

}

(j,m1,m2)∈IWB

.

(3.13)

The bandeletization replaces each family of scaling functions {φj,m2(x2)}m2 by a fam-
ily of orthonormal wavelets that generates the same approximation space. The result-
ing bandelet orthonormal basis of L2(B) is:

{
φj,m1(x1 − g(x2))ψj,m2(x2)) , ψj,m1(x1 − g(x2))ψl,m2(x2))

, ψj,m1(x1 − g(x2))ψj,m2(x2))

}

j,l>j,m1,m2

.

(3.14)

3.2. Bandelet Approximation in a Band. The bandelet approximation of
geometrically regular horizon models is studied in bands around their edge. The
following definition introduces such geometrical regular functions according to the
model of Section 2.

Definition 3.1. A function f is a Cα horizon model over [0, 1]2 if
• f = f̃ or f = f̃ ? h, with f̃ ∈ Cα(Λ) for Λ = [0, 1]2 − {C},
• the blurring kernel h has a support included in [−s, s]2 and is Cα with ‖h‖Cα ≤
s−(2+α),
• the edge curve C is Hölderian of order α and its tangents have an angle with

the horizontal or vertical direction that remains smaller than π/3, with a
distance larger than s from the horizontal (respectively vertical) boundary.

Observe that the kernel h can be rewritten as a dilation by s: h(x) = s−2 h1(s−1x)
where h1 has a support in [−1, 1] and ‖h1‖1 = ‖h‖1. Normalizing the amplitude of h
by setting ‖h‖Cα = s−(2+α) is equivalent to setting ‖h1‖Cα = 1. The convolution with
h diffuses the edge C over a tube Cs defined as the set of points within a distance s of C.
Outside this tube f is uniformly Cα but within this tube its regularity depends upon
s which may be an arbitrarily small variable. We study the bandelet approximation
of f within a band B that includes the tube Cs.

A bandelet basis is constructed from a geometric flow. To optimize the approx-
imation of f with M parameters in a bandelet basis, it is necessary to specify this
geometric flow with as few parameters as possible. A vertically parallel flow is speci-
fied in a horizontal band B of length `1 = b1− a1 by parameterizing the flow integral
g(x1) over a family of orthogonal scaling functions {θk,m(t)}1≤m≤`12−k at a scale 2k.
The scaling functions {θk,m(t)}1≤m≤`12−k whose support do not intersect the border
of [a1, b1] can be written θk,m(t) = θ(2−kt−m), and

∀t ∈ [a1, b1] , g(t) =

`12−k∑

m=1

αm θk,m(t) with αm = 〈g, θk,m〉 ‖θk,m‖−2 . (3.15)

We suppose that the space Vk generated by the orthogonal family {θk,n(t)}1≤n≤`12−k

includes polynomials of degree p over [a1, b1], and that θ(t) is compactly supported
and p times differentiable. The decomposition (3.15) defines a parameterized flow
that depends upon the scale 2k and the (b1− a1)2−k coefficients αn. Since |g′(t)| ≤ 2
and g is defined up to a constant, one can set g(a1) = 0 so that |g(t)| ≤ 2 `1. As a
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result, one can verify that there exists Cθ > 0 that only depend upon θ such that
|αm| ≤ Cθ (b1 − a1).

There are many possible approaches to compute a geometric flow for a horizon
model. Section 4.2 describes an algorithm that computes the flow by minimizing
the approximation error of the resulting bandelet representation. One can also use a
simpler and computationally more efficient approach that minimizes a Sobolev norm
in the direction of the flow [14]. If the horizon model is horizontal, the edge C can be
parameterized horizontally by (x1, c(x1)). For each x1, because of the blurring effect,
the position of the edge can only be estimated up to an error bounded by the size s of
the blurring kernel. The resulting estimate g̃(x1) of the edge position c(x1) satisfies
‖g̃ − c‖∞ ≤ Cd s, where Cd depends upon precision of the algorithm that is used.

Let PVk
be the orthogonal projection on the approximation space Vk. To repre-

sent the geometry with few coefficients, a regularized edge is considered:

g(t) = PVk
g̃(t) =

`12−k∑

m=1

αm θk,m(t) with αm = 〈g̃, θk,m〉 ‖θk,m‖−2 . (3.16)

We shall prove that if the scale 2k is small enough then the distance between C and
the resulting regularized edge remains of the order of s.

Let us now construct a bandelet orthonormal basis over a band B parallel to
the geometric flow defined by the flow integral g, with a one-dimensional wavelet ψ
which has p ≥ α vanishing moments. To simplify notations, in the following we write
B = {bm}m the orthonormal bandelet basis defined in (3.10). An approximation of f
in B is obtained by keeping only the bandelet coefficients above a threshold T :

fM =
∑

m
|〈f,bm〉|≥T

〈f, bm〉 bm . (3.17)

The total number of parameters is M = MG + MB where MG is the number of
parameters αn in (3.16) that define the geometric flow in B, and MB is the num-
ber of bandelet coefficients above T . The following theorem computes the resulting
approximation error.

Theorem 3.2. Let f be a Cα horizon model with an edge parameterized by c
and 1 ≤ α < p . Let g̃ be an edge estimation such that ‖g̃− c‖∞ ≤ Cd s. There exists
C such that for any threshold T , the approximation error in a bandelet basis defined

by the the flow integral g = PVk
(g̃) with 2k = max(‖c‖−1/α

Cα , 1) max(s, T 2α/(α+1))1/α

satisfies

‖f − fM‖2 ≤ C C2
f `

α+1
1 M−α (3.18)

with Cf = max(‖f̃‖Cα(Λ) max(‖c‖αCα , 1) max(‖c‖αCα , Cd, 1),min(‖c‖(α+1)/(2α)
Cα , 1), ‖f̃‖α+1

C1(Λ)).

The constant Cf is defined as the maximum of 3 quantities :

• ‖f̃‖Cα(Λ) max(‖c‖αCα , 1) max(‖c‖αCα , Cd, 1) that controls the regularity ofWf ,

• min(‖c‖(α+1)/(2α)
Cα , 1) that appears in the geometry approximation,

• ‖f̃‖α+1
C1(Λ) that controls the error f − f̃ away from the singularities.

This does not correspond to any fine optimization in the relationship between T , s
and the regularity of f and Cγ but on the natural quantities that arises in the proof.

Proof. [Theorem 3.2]
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We first prove the following proposition that considers the case T ≤ s(α+1)/(2α)

where the geometric approximation scale is 2k = max(‖c‖−1/α
Cα , 1) s1/α.

Proposition 3.3. Under the hypotheses of Theorem 3.2, there exists C that
only depends upon the edge geometry such that for any threshold T ≤ s(α+1)/(2α) the
bandelet approximation error satisfies

‖f − fM‖2 ≤ C C2/(α+1)
f `1 T

2α/(α+1) (3.19)

and M ≤ max(C C
2/(α+1)
f `1 T

−2/(α+1), C | log2 T |) . (3.20)

Proof. [Proposition 3.3] Let g be the projection of g̃ on the space Vk with

2k = max(‖c‖−1/α
Cα , 1) s1/α, B the associated band and B the associated bandelet

basis.
By construction, the number of geometric parameters MG satisfies

MG ≤ max((b1 − a1) max(‖c‖−1/α, 1)−1 s−1/α, C) (3.21)

and, as s ≥ T 2α/(α+1),

MG ≤ max(C C
2/(α+1)
f `1 T

−2/(α+1), C | log2 T |) (3.22)

and we should now focus on the number MB of bandelet coefficients above T .
The bandelet basis B of B is separated in two families, B1 the bandelets whose

support does not intersect Cs and B2 the bandelets whose support does intersect Cs.
Using the orthogonality of the basis B, we verify that

‖f − fM‖2 =
∑

m
|〈f,bm〉|<T

|〈f, bm〉|2 (3.23)

‖f − fM‖2 =
∑

bm∈B1

|〈f,bm〉|<T

|〈f, bm〉|2 +
∑

bm∈B2

|〈f,bm〉|<T

|〈f, bm〉|2 (3.24)

and MB = MB,1 +MB,2 where MB,1 and MB,2 are respectively the number of ban-
delets coefficients above the threshold T in B1 and B2.

The proof is then divided in two lemmas. The Lemma 3.4 takes care of the outer
bandelets, B1, that do not intersect the singularities and relies on the regularity of f .

Lemma 3.4. Under the hypotheses of Theorem 3.2, there exists a constant C
such that

∑

bm∈B1

|〈f,bm〉|<T

|〈f, bm〉|2 ≤ C C2/(α+1)
f `1 T

2α/(α+1) (3.25)

and MB,1 ≤ max(C C
2/(α+1)
f `1 T

−2/(α+1), C) . (3.26)

Lemma 3.5 considers the inner bandelets of B2, that capture the sharp transitions of
f .

Lemma 3.5. Under the hypotheses of Theorem 3.2, there exists a constant C
such that

∑

bm∈B2

|〈f,bm〉|<T

|〈f, bm〉|2 ≤ C C2/(α+1)
f `1 T

2α/(α+1) (3.27)

and MB,2 ≤ max(C C
2/(α+1)
f `1 T

−2/(α+1), C | log2 T |) . (3.28)
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Combining (3.22), (3.25), (3.26) (3.27) and (3.28) allows to conclude.
To prove Lemma 3.4 and Lemma 3.5, we go back to the definition of the ban-

delets. With a slight abuse of notation, we note bl,j,m(x1, x2) the bandelets defined
by ψl,m1(x1)ψj,m2(x2 − g(x1)) if j < l and either by ψj,m1(x1)ψj,m2(x2 − g(x1)) or
ψj,m1(x1)φj,m2(x2−g(x1)) if j = l. In the last case, both ψj,m1(x1)ψj,m2(x2−g(x1))
and ψj,m1(x1)φj,m2(x2 − g(x1)) have vanishing moments along x1 and, as this is the
only direction in which the moments are used, could be handled in the exact same
way. From now on, we suppose that bl,j,m(x1, x2) = ψl,m1(x1)ψj,m2(x2 − g(x1)).

As seen in (3.5) and (3.10),

〈f, bl,j,m〉 = 〈f(x1, x2 + g(x1)), ψl,m1(x1)ψj,m2(x2)〉 = 〈Wf(x1, x2), ψl,m1(x1)ψj,m2(x2)〉 .
(3.29)

The regularity of Wf is the key to control the bandelet coefficient.
If f is Ck in a the neighborhood of a point (x1, x2 + g(x1)), a straightforward

calculation shows that along the x2 axis

∣∣∣∣∣
∂TαUWf

∂x
TαU
2

(x1, x
′
2)− ∂TαUWf

∂x
TαU
2

(x1, x2)

∣∣∣∣∣ ≤ ‖f‖Cα |x′2 − x2|α−TαU .

Along the x1 axis, a control on the regularity of g is required and after some calculation
one derives that if g is Cα then Wf is also Cα and that

∣∣∣∣∣
∂TαUWf

∂x
TαU
1

(x′1, x2)− ∂TαUWf

∂x
TαU
1

(x1, x2)

∣∣∣∣∣ ≤ ‖f‖Cα max(‖g‖, ‖g‖α)|x′1 − x1|α−TαU .

The definition of g implies that the difference between g and the true curve c,
g − c, is even Cα as stated by the following lemma proved in Appendix A.3 :

Lemma 3.6. There exists a constant C such that if c is Cα over [a1, b1] and g̃

satisfies ‖g̃ − c‖∞ ≤ Cd s then g = PVk
g̃ with 2k = max(‖c‖−1/α

Cα , 1) s1/α is Cα and
satisfies

∀β ≤ TαU, ‖(g − c)(β)‖∞ ≤ C max(‖c‖Cα , Cd, 1) s1−β/α (3.30)

and

∀x |x− x0| ≤ K2k, ‖(g − c)(TαU)(x)−(g − c)(TαU)(x0)‖∞
≤ C max(‖c‖Cα , Cd, 1) |x− x0|α−TαU .

(3.31)

An immediate consequence of this lemma is that g is Cα with a norm bounded
by C max(‖c‖Cα , Cd, 1) + ‖c‖Cα .

The proof of Lemma 3.4 in Appendix A.1 combines this lemma with the regularity
of f outside Cs to obtain a regularity of Wf along x1 and thus obtained a decay of
the bandelets coefficients with their vanishing moments in this direction.

In Appendix A.2 to obtain Lemma 3.5, some regularity along x1 for Wf in the
neighborhood of the smoothed singularity is required. This is given by the following
lemma proved in Appendix A.4:
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Lemma 3.7. Suppose f is a Cα horizon model with s > 0. If g satisfies

∀β ≤ TαU, ‖(g − c)(β)‖∞ ≤ C max(‖c‖Cα , Cd, 1) s1−β/α (3.32)

and

∀x |x− x0| ≤ Ks1/α, ‖(g − c)(TαU)(x)− (g − c)(TαU)(x0)‖∞
≤ C max(‖c‖Cα , Cd, 1) |x− x0|α−TαU .

(3.33)

then
∣∣∣∣∣
∂TαU

∂x
TαU
1

Wf(x′1, x2) − ∂TαU

∂x
TαU
1

Wf(x1, x2)

∣∣∣∣∣

≤ C ‖f̃‖Cα(Λ) max(‖c‖αCα , 1) max(‖c‖αCα , Cαd , 1) s−1 |x′1 − x1|α−TαU .

(3.34)

This bound and the condition on the threshold T ≤ s(α+1)/(2α) are sufficient to
prove Lemma 3.5

The hypotheses of Proposition 3.3 requires a small threshold, T ≤ sα+1/(2α), but
a similar results also holds for larger T .

Proposition 3.8. Under the hypotheses of Theorem 3.2, there exists a constant
C such that for all threshold T the resulting bandelet approximation error satisfies

‖f − fM‖2 ≤ C C2/(α+1)
f `1 T

2α/(α+1) (3.35)

and M ≤ max(C C
2/(α+1)
f `1 T

−2/(α+1), C | log2 T |) . (3.36)

Proof. [Proposition 3.8]
If ‖g̃ − c‖∞ ≤ Cd s and T 2α/(α+1) ≤ s, Proposition 3.3 applies. Otherwise,

T 2α/(α+1) > s and we prove that the condition on the edge estimation of Theorem 3.2,
‖g̃ − c‖∞ ≤ Cd s, can even be relaxed to ‖g̃ − c‖∞ ≤ Cd max(s, T 2α/(α+1)).

Indeed, let fmod = f̃ ? hmod where

hmod =
( s

T 2α/(α+1)

)2

h
( s

T 2α/(α+1)
x
)

(3.37)

is a dilation of the smoothing kernel h supported in [−T 2α/(α+1), T 2α/(α+1)]2, which
satisfies ‖hmod‖Cα ≤ (T 2α/(α+1))(2+α).

The following lemma proved in Appendix A.5 implies

‖f − fmod‖2 ≤ C ‖f‖2C1(Λ) `1 T
2α/(α+1) : (3.38)

Lemma 3.9. If f is as Cα horizon model , there exists a constant C such that

∥∥∥‖h‖1f̃ − f
∥∥∥

2

≤ C ‖f̃‖2C1(Λ) `1 s (3.39)

Furthermore Proposition 3.3 applies to fmod so

‖fmod − fmod,Mmod
‖2 ≤ C .C2/(α+1)

f `1 T
2α/(α+1) (3.40)

and Mmod ≤ max(C C
2/(α+1)
f `1 T

−2/(α+1), | log2 T |) . (3.41)

11



Let J ′ be the set of bandelets such that |〈fmod, bm〉| ≥ T , as

‖f − fmod‖2 ≤ C C2/(α+1)
f `1 T

2α/(α+1) , (3.42)

one can verify that

∑

m/∈J′
|〈f, bm〉|2 ≤ 2(

∑

m/∈J′
|〈fmod, bm〉|2 +

∑

m/∈J′
|〈f − fmod, bm〉|2) (3.43)

≤ 2(‖fmod − fmod,Mmod
‖2 + ‖f − fmod‖2) (3.44)

∑

m/∈J′
|〈f, bm〉|2 ≤ C C2/(α+1)

f `1 T
2α/(α+1) (3.45)

while Card (J ′) ≤ C C2/(α+1)
f `1 T

−2/(α+1). To conclude, we rely on the optimality of
the thresholding strategy in the following sense:

Lemma 3.10. Let B = {um}m∈J be a family of functions and JT = {m :
|〈f, um〉| > T}. If J ′ ⊂ J then

∑

m/∈JT
|〈f, um〉|2 + T 2Card (JT ) ≤

∑

m/∈J′
|〈f, um〉|2 + T 2Card (J ′) . (3.46)

Proof. [Lemma 3.10] For every J ′ ⊂ J ,

∑

m/∈J′
|〈f, um〉|2 + T 2Card (J ′) =

∑

m∈J
((1− 1m∈J′)|〈f, un〉|2 + 1m∈J′T

2) . (3.47)

This implies that each term of the sum is minimized if m ∈ J ′ only when |〈f, um〉|2 ≥
T 2 i.e. the sum is minimal for J ′ = JT .

Indeed this implies that the bounds obtained for the subset J ′ remains valid for
the subset JT obtained with the thresholding. As proved in Lemma 3.10,

∑

m/∈JT
|〈f, um〉|2 + T 2Card (JT ) ≤

∑

m/∈J′
|〈f, um〉|2 + T 2Card (J ′) (3.48)

≤ C C2/(α+1)
f `1 T

2α/(α+1) + T 2C C
2/(α+1)
f `1 T

−2/(α+1)

(3.49)
∑

m/∈JT
|〈f, um〉|2 + T 2Card (JT ) ≤ C C2/(α+1)

f `1 T
2α/(α+1) (3.50)

which immediately implies (3.35) and (3.36).
Theorem 3.2 proves that for a horizon model the bandelet approximation error has

an optimal asymptotic decay if the flow integral g is computed at an appropriate scale
2k that depends upon f , from an estimation g̃ that is sufficiently precise. Section 4.2
explains how to compute such a flow and find the approximation scale 2k, in a more
general setting, with a best basis strategy that minimizes the approximation error.

4. Bandelet Frames and Approximations.

4.1. Bandelet Frames. To approximate piecewise regular images having sev-
eral edges over [0, 1]2, the image support is partitioned into regions [0, 1]2 = ∪iΩi,
inside each of which the restriction of f is either uniformly regular or is a horizon
model or has two edges that meet. This means that in each Ωi f has either no edge

12



or a single edge whose tangents have an smaller angle than π/3 with the horizontal
or with the vertical, or f has an edge junction. This is illustrated by Figure 4.1 with
square regions. The size of squares become smaller in the neighborhood of junctions.
Bandelet bases are defined over bands that include the regions Ωi and it is shown that
their union defines a frame of L2[0, 1]2.

Fig. 4.1. Partition of an image

If f is uniformly regular in a region Ωi then there is no need to define a geometric
flow. Similarly, if f has an edge junction in Ωi then there is no geometric regularity
and no appropriate geometric flow can be defined. In both cases, f is decomposed in a
separable wavelet basis Bi = {bi,m}m , that is constructed over the smallest rectangle
Bi that includes Ωi. If f is a horizon model over Ωi then a vertically or horizontally
parallel geometric flow is defined over Ωi. Let Bi be the most narrow band parallel to
the flow in Ωi and that includes Ωi. Figure 4.2 gives an example. Section 3.1 explains
how to construct a bandelet orthonormal basis Bi = {bi,m}m of L2(Bi). The following
proposition proves that the union of such orthonormal bases over a segmentation of
[0, 1]2 defines a frame of L2([0, 1]2), that is called a bandelet frame. We write PΩi the
orthogonal projector defined by

PΩif(x) =

{
f(x) if x ∈ Ωi
0 if x /∈ Ωi

. (4.1)

Ωi

Bi

Fig. 4.2. A square Ωi with a flow and its associated minimum band Bi.

13



Proposition 4.1. For any segmentation [0, 1]2 = ∪iΩi and f ∈ L2[0, 1]2

f =
∑

i,m

〈f, bi,m〉 b̃i,m with b̃i,m = PΩibi,m . (4.2)

and

‖f‖2 ≤
∑

i,m

|〈f, bi,m〉|2 . (4.3)

If the sup over all x ∈ [0, 1]2 of the number of bands Bi that includes x is a finite
number A then

‖f‖2 ≥ 1

A

∑

i,m

|〈f, bi,m〉|2 (4.4)

and the union of bandelet bases F = ∪iBi is a frame of L2([0, 1]2).
Proof. [Proposition 4.1] Since Bi = {bi,m}m is an orthonormal basis of L2(Bi),

PBif =
∑

m〈f, bi,m〉 bi,m. Moreover Ωi ⊂ Bi and [0, 1]2 = ∪iΩi so

f =
∑

i

PΩif =
∑

i

PΩiPBif =
∑

i,m

〈f, bi,m〉PΩibi,m . (4.5)

which proves (4.2).
To prove (4.3) we shall verify a slightly more general property that will be useful

later:

If f̃ =
∑

i,m

αi,m b̃i,m then ‖f̃‖2 ≤
∑

i,m

|αi,m|2 . (4.6)

Indeed PΩi f̃ = PΩi

∑
m αi,m bi,m so ‖PΩi f̃‖2 ≤

∑
m |αi,m|2 and since ‖f̃‖2 =

∑
i ‖PΩi f̃‖2

we get (4.6). Applying (4.6) to (4.2) yields (4.3).
Since the sup over all x ∈ [0, 1]2 of the number of regions Bi that includes x is A,

one verifies that
∑
i ‖f‖2Bi ≤ A‖f‖2 from which we derive (4.4) by inserting (4.5).

This scheme provides a direct reconstruction of an image from its bandelet coef-
ficients. The discontinuous nature of the border b̃i,m leads to blocking effects which
have to be avoided in image processing, but which do not degrade the error decay.
To suppress these discontinuities, the reconstruction can be computed with the clas-
sical iterative frame algorithm on the full bandelet frame. This would yield a smaller
approximation error and may avoid the blocking effect but requires an iterative re-
construction algorithm. Another solution is proposed in [14], where the bandelets
themselves are modified in order to cross the boundaries, which removes the blocking
artefacts. The bandelet lifting scheme removes the blocking effects but we then have
no proof that the resulting best basis algorithm described in the next section yields
an approximation whose error decay is optimal for geometrically regular functions.

4.2. Approximation in a Dictionary of Bandelet Frames. A bandelet
frame is defined by geometric parameters that specify the segmentation of the im-
age support into subregions Ωi and by the geometric flow in each Ωi. A dictionary
of bandelet frames is constructed with segmentations in dyadic square regions and
a parameterization of the geometric flow in each region. Within this dictionary, a
best bandelet frame is defined by minimizing a Lagrangian cost function. The main
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theorem computes the error when approximating a geometrically regular function in
a best bandelet frame.

Like in the wedgelet bases of Donoho [9], the image is segmented in dyadic square
regions obtained by successive subdivisions of square regions into four squares of
twice smaller width. For a square image support of width L, a square region of width
L 2λ is represented by a node at the depth |λ| of a quad-tree. A square subdivided
into four smaller squares corresponds to a node having four children in the quad-
tree. Figure 4.3 gives an example of a dyadic square image segmentation with the
corresponding quad-tree. This tree will be coded by the list of the splitting decision
at each inner node.

20

29

21 22

23

4

6

28

30

125 126

124 127

4 6

20 21 22 23 28 29 30

124 125 126 127

Fig. 4.3. A dyadic square segmentation and its corresponding quadtree

In each dyadic square Ωi of size 2λi a variable indicates if the basis is a wavelet or
bandelet basis and in this last case whether the geometric flow is constant vertically
or horizontally. If it exists, the flow is characterized by the decomposition (3.15) of
an integral curve over a family of scaling functions at a scale 2ki . Let F = ∪iBi

be the bandelet frame resulting from such a dyadic segmentation of [0, 1]2 and such
a parameterized flow. An approximation of f in F is obtained by keeping only the
bandelet coefficients above a threshold T :

fM =
∑

i,m
|〈f,bi,m〉|≥T

〈f, bi,m〉 b̃i,m , (4.7)

with b̃i.m = PΩibi,m. The total number of parameters is M = MS +MG +MB where
MS is the number of geometric parameters that define the dyadic image segmentation,
MG is the number of parameters that define the geometric flows in all the dyadic
squares and MB is the number of bandelet coefficients above T . Optimizing the
frame means finding F , that depends upon f and M , in a dictionary D of bandelet
frame so that

‖f − fM‖2 ≤ CM−β (4.8)

for the largest possible exponent β.

Since f − fM =
∑
|〈f,bi,m〉|<T 〈f, bi,m〉 b̃i,m we derive from (4.6) that

‖f − fM‖2 ≤
∑

i,m
|〈f,bi,m〉|<T

|〈f, bi,m〉|2 . (4.9)
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To control ‖f − fM‖2 for a fixed number of parameters M = MS + MG + MB , we
thus need to minimize

∑
|〈f,bi,m〉|<T |〈f, bi,m〉|2. This is done indirectly by minimizing

a Lagrangian, similarly to the strategy used by Donoho [9] to optimize the geometry
of wedgelet approximations:

L(f, T,F) =
∑

bi,m∈F
|〈f,bi,m〉|<T

|〈f, bi,m〉|2 + T 2M with M = MS +MG +MB . (4.10)

The Lagrangian multiplier is T 2 because at the threshold level the squared amplitude
T 2 of a bandelet coefficient should increase the Lagrangian by the same amount as
an increase by 1 of the number MB of bandelet coefficients. The best bandelet frame
F is the one that minimizes the Lagrangian (4.10) over a dictionary of bandelets.

To reduce the dictionary D to a finite size, the resolution of the image geometry
is limited to T 2, which we shall see is sufficient to approximate f efficiently. This
means first that the width of the square image regions remain larger than T 2 and
hence that the maximum depth of the quadtree representing the dyadic square image
segmentation is T| log2 T

2|U. It also means that the decomposition coefficients αn of
the geometry defined in (3.15) are quantized:

QT 2(αn) = q T 2 if (q − 1/2)T 2 ≤ αn < (q + 1/2)T 2 with q ∈ Z .

In a dyadic square of size 2λ, since |αn| ≤ Cθ 2λ, we necessarily have |q| ≤ Cθ 2λ T−2 ≤
Cθ T

−2. The dictionary DT 2 of bandelet frames constructed over this geometry of
resolution T 2 thus has a finite size and we can find a best basis that minimizes the
Lagrangian (4.10) over this dictionary.

We now concentrate on the approximation capabilities of a best bandelet frame
obtained by minimizing L(f, T,F) over the dictionary of frames DT 2 , when f has
some geometric regularity. The following definition specifies the geometric regularity
conditions on f that will used in the remaining of the paper.

Definition 4.2. A function f is Cα geometrically regular over [0, 1]2 if
• f = f̃ or f = f̃ ? h with f̃ ∈ Cα(Λ) for Λ = [0, 1]2 − {Cγ}1≤γ≤G,
• the blurring kernel h is Cα, compactly supported in [−s, s]2 and ‖h‖Cα ≤
s−(2+α),
• the edge curves Cγ are Hölderian of order α and do not intersect tangentially

if α > 1.
The following theorem gives an upper bound of the approximation error of f in

a best bandelet frame.
Theorem 4.3. Let f be a Cα geometrically regular function and 1 ≤ α < p.

There exists C that only depends upon the edges geometry such that for any T > 0
the thresholding approximation of f in a best bandelet frame of DT 2 yields an approx-
imation fM that satisfies

‖f − fM‖2 ≤ C C2
f max(1, `C)

α+1 M−α (4.11)

with

with M ≤ C max(1, `C)C
2/(α+1)
f T−2/(α+1) (4.12)

where Cf = max(‖f̃‖Cα(Λ) max(‖c‖αCα , 1)2, ‖c‖(α+1)/(2α)
Cα , ‖f‖α+1

C1(Λ)) and `C is the total

length of the curves.
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The remarks on the non optimality of the constant Cf of Theorem 3.2 apply here.
In addition, the dependency of C on the edges geometry is not explicitly controlled
but involves the number of curves G as well as the geometric configuration (distance,
angle of the crossing,. . . ).

Proof. [Theorem 4.3] The theorem proof is based on the following lemma which
exhibits a bandelet frame inDT 2 having suitable approximation properties when α > 1
and thus the edges have tangents. The remaining case, α = 1, is obtained with the
classical wavelet basis that is included in the dictionary.

Lemma 4.4. Under the hypotheses of Theorem 4.3 and if α > 1, for any T > 0
there exists a bandelet frame F ∈ DT 2 such that

L(f, T,F) ≤ C C2/(α+1)
f max(1, `C)T

2α/(α+1) , (4.13)

for a constant C that only depends upon the edges geometry.
We first prove that this lemma implies Theorem 4.3 and will then prove the

lemma. Let F ′ = {b′i,m}i,m be a best bandelet frame that minimizes L(f, T,F) in
DT 2 . Clearly, L(f, T,F ′) ≤ L(f, T,F), where F is the frame of Lemma 4.4, and hence

L(f, T,F ′) =
∑

b′i,m∈F ′
|〈f,b′i,m〉|<T

|〈f, b′i,m〉|2 + T 2M ≤ C C2/(α+1)
f max(1, `C)T

2α/(α+1) .

(4.14)

As a result
∑

b′i,m∈F ′
|〈f,b′i,m〉|<T

|〈f, b′i,m〉|2 ≤ C C2/(α+1)
f max(1, `C)T

2α/(α+1) (4.15)

and

M ≤ C C2/(α+1)
f max(1, `C)T

2α/(α+1)T−2 (4.16)

M ≤ C C2/(α+1)
f max(1, `C)T

−2/(α+1) . (4.17)

Inserting (4.17) in (4.15) yields

∑

b′i,m∈F ′
|〈f,b′i,m〉|<T

|〈f, b′i,m〉|2 ≤ C Cf 2 max(1, `C)M
−α , (4.18)

and since we saw in (4.9) that ‖f − fM‖2 ≤
∑

b′i,m∈F ′
|〈f,b′i,m〉|<T

|〈f, b′i,m〉|2, this proves the

theorem result (4.11).
The core of Theorem 4.3 is thus the Lemma 4.4 whose proof is constructive.
Proof. [Lemma 4.4]
We first design a dyadic square segmentation associated to f and T and a flow in

each square so that the resulting bandelet frame F satisfies (4.13). This segmentation
is constructed by separating squares that are close to an edge from the others. Regular
squares i ∈ IR are squares which are distant by more than s from all edges Cγ . In
such squares, f is uniformly regular. No geometric flow is defined in regular squares,
which means that the bandelet basis is a separable wavelet basis.

17



Let us now consider squares that include or are adjacent to a single edge. We say
that a region Ω includes a single horizontal edge component if it is crossed horizontally
by a single edge Cγ that remains at distance smaller than s and whose tangents have
angles with the horizontal smaller than π/3 and if there is no other edge at a distance
smaller than s. It is tempting to use this definition directly on the Ωi. However, to
efficiently approximate f with such bandelets, one must also verify that the larger
band Bi includes no other edge component. To enforce this property, if the size of Ωi

is 2λ, a larger vertical rectangle Ω̃i of height 7× 2λ and width 2λ, centered in Ωi is
considered. We shall verify that Bi ⊂ Ω̃i.

A square Ωi is said to be a horizontal edge square if Ωi is at a distance smaller
than s from an edge curve and if Ω̃i includes a single horizontal edge component Cγ
and remains at a distance larger than s from the two straight horizontal segment of the
boundary of [0, 1]2, and we write i ∈ IH. In this case, a vertically parallel geometric

flow integral is defined in Ωi by approximating ci at a scale 2k = max(‖c‖1/αCα , 1) η1/α,
where η = max(s, T 2α/(α+1)) plays the role of a geometric resolution, and by quan-
tizing the resulting coefficients:

gi(x) =

2λ−k∑

n=1

QT 2

( 〈ci, θk,n〉
‖θk,n‖2

)
θk,n(x) (4.19)

with

QT 2(x) = qT 2 if (q − 1/2)T 2 ≤ x < (q + 1/2)T 2 with q ∈ Z .

Lemma 3.6 proves that choosing 2k = max(‖c‖−1/α
Cα , 1) η1/α implies that the error

between gi and ci satisfies ‖gi − ci‖∞ ≤ C max(‖c‖Cα , 1) η.
Vertical edge squares are defined similarly by inverting the roles of the horizontal

and vertical directions and hence of x1 and x2. If Ωi is a square of size 2λ then the
Ω̃i is a horizontal rectangle of height 2λ and width 7× 2λ. A square Ωi is said to be
a vertical edge square if Ωi is at a distance smaller than s from an edge curve and if
Ω̃i includes a single vertical edge component Cγ and remains at a distance larger than
s from the two straight vertical segment of the boundary of [0, 1]2. We then write
i ∈ IV . A horizontally parallel flow is then defined in Ωi by approximating the edge
parameterization ci as in (4.19). A square that is both a horizontal edge square and
a vertical edge square is considered as a horizontal edge square by default.

The following algorithm constructs a dyadic image segmentation by labeling reg-
ular, vertical edge and horizontal edge squares, and introduces a third residual class
called junction squares because we shall see that they are close to junction points. No
geometric flow is defined in junction squares because they are close to several edges,
and the corresponding bandelet basis is thus a separable wavelet basis.

• Initialization: label the square [0, 1]2 a temporary square.
• Step 1: Split in four every temporary square and remove it.
• Step 2: Label, in the following order, each new subdivided square Ωi as a:

– regular square i ∈ IR if it is at a distance larger than s from all edges
– junction square i ∈ IJ if its size is smaller than η
– horizontal edge square i ∈ IH if Ω̃i includes a single horizontal edge

component
– vertical edge square i ∈ IV if Ω̃i includes a single vertical edge compo-

nent.
– temporary square otherwise.
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Fig. 4.4. Partition with dyadic square labeled J , R, H and V.
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Fig. 4.5. Close up on a junction zone with an intermediate partition with dyadic square labeled
R, H, V and temporary square.

• Step 3: Go to step 1 if there remains temporary squares.
Figure 4.4 illustrates such a labeled segmentation.

From such a dyadic image partition, we associate a bandelet frame F as the
union of the bandelet bases defined with the geometric flow constructed (or not) in
each square depending upon their label. We now prove that the resulting Lagrangian
satisfies the property (4.13) of Lemma 4.4. To evaluate the Lagrangian,

L(f, T,F) =
∑

bi,m∈F
|〈f,bi,m〉|<T

|〈f, bi,m〉|2 + T 2 (MS +MG +MG) (4.20)

we separate the geometrical cost MS +MG and decompose it into:

L(f, T,F) = T 2 (MS +MG) +
∑

i∈IR
L̃(f, T,Bi) +

∑

i∈IJ
L̃(f, T,Bi)

+
∑

i∈IH
L̃(f, T,Bi) +

∑

i∈IV
L̃(f, T,Bi),

(4.21)

with

L̃(f, T,Bi) =
∑

bi,m∈Bi
|〈f,bi,m〉|<T

|〈f, bi,m〉|2 + T 2MB,i (4.22)
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where MB,i is the number of inner-products |〈f, bi,m〉| ≥ T for a fixed i.

To prove that L(f, T,F) ≤ C C
2/(α+1)
f max(1, `C)T 2α/(α+1), a similar bound for

T 2 (MS + MG) and each of the four partial sums corresponding to different class of
squares in (4.21) shall be proved.

The first lemma characterizes the dyadic segmentation obtained by our splitting
algorithm and computes the resulting number of geometric parameters. Its proof can
be found in Appendix B.1.

Lemma 4.5. There exists a constant C that depends upon the edges geometry
such that the resulting dyadic image segmentation defined recursively includes at most
C | log2 max(s, T 2α/(α+1))| squares with at most C junction squares. Furthermore

T 2 (MS +MG) ≤ C `C max(‖c‖−1/α
Cα , 1)T 2α/(α+1) . (4.23)

The next lemma computes the Lagrangian value on regular squares by using
standard wavelet approximation properties for uniformly regular functions. Its proof
is the appendix B.2.

Lemma 4.6. There exists a constant C that depends upon the edges geometry
such that the sum of the partial Lagrangian L̃i over each regular square Ωi (i ∈ IR)
satisfies

∑

i∈IR
L̃i(f, T,Bi) ≤ C C2/(α+1)

f T 2α/(α+1) . (4.24)

For junction squares the Lagrangian value is calculated using the fact that there
are few such squares and they have a small size bounded by η. The lemma’s proof is
in Appendix B.3.

Lemma 4.7. There exists a constant C that depends upon the edges geometry
such that the sum of the partial Lagrangian L̃i over all junction square Ωi (i ∈ IJ )
satisfies

∑

i∈IJ
L̃i(f, T,Bi) ≤ C C2/(α+1)

f T 2α/(α+1) . (4.25)

The final lemma gives an upper bound on the Lagrangian of bandelets constructed
over vertical edge squares. This proof in appendix B.4. It is at the core of our
construction and relies on the precision of the geometric flow used in each edge square.

Lemma 4.8. There exists a constant C that depends upon the edges geometry such
that the sum of the partial Lagrangian L̃i over all horizontal edge square Ωi (i ∈ IH)
satisfies

∑

i∈IH
L̃(f, T,Bi) ≤ C C2/(α+1)

f max(1, `C)T
2α/(α+1) . (4.26)

Transposing this result to vertical edge squares proves that

∑

i∈IV
L̃(f, T,Bi) ≤ C C2/(α+1)

f max(1, `C)T
2α/(α+1) . (4.27)

Inserting (4.23), (4.24), (4.25), (4.26) and (4.27) in equation (4.21) proves the result
(4.13) of Lemma 4.4.
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This theorem provides a constructive approximation scheme with an optimal ap-
proximation bound. The decay rate M−α of the error is optimal as it is the same as
the optimal one for uniformly Cα functions. It is much better than the decay rate
M−1 for the wavelets and improves the decay rate M−2 (log2M)3 of the curvelets
even if α = 2. Furthermore, the Lagrangian minimization does not require any in-
formation on the regularity parameter α or on the smoothing kernel h. However,
an exhaustive search to minimize the Lagrangian in the dictionary DT 2 requires an
exponential number of operations which prohibits its practical use. Section 6.2 intro-
duces a modified dictionary and a fast algorithm that finds a best bandelet basis with
a polynomial complexity, at the cost of adding a logarithmic factor in the resulting
approximation error.

5. Image Compression. For image compression, we must minimize the total
number of bits R required to encode the approximation as opposed to the number
of parameters M . An image is compressed in a bandelet frame by first coding the
segmentation of the image support and a geometric flow in each region of the segmen-
tation. The decomposition coefficients of the image in the resulting bandelet frame
are then quantized and stored with a binary code. This very simple algorithm does
not provide a scalable scheme but does give an almost optimal distortion-rate.

We denote by R the resulting total number of bits to encode a bandelet frame
and the bandelet coefficients of f in this frame. It can be decomposed into

R = RS +RG +RB (5.1)

where RS is the number of bits to encode the dyadic square segmentation, RG is the
number of bits to encode the flow in each square region and RB is the number of bits
to encode the quantized bandelet coefficients.

We saw in Section 4.2 that a dyadic square segmentation of [0, 1]2 is represented
by a quadtree whose leaves are the square regions of the partition. Each interior node
of the tree corresponds to a square that is split in four subsquares. This splitting
decision is encoded with a bit equal to 1. The leaves of the tree correspond to squares
which are not split, which is encoded with a bit equal to 0. With this code, the number
of bits RS that specifies the segmentation quadtree is thus equal to the number of
nodes of this quad-tree.

Over a square of size 2λ, the geometric flow is parameterized at a scale 2k

in (3.15) by 2λ−k quantized coefficients αm = q T 2 with |q|T 2 ≤ Cθ. We thus need
2λ−k log2(CθT

−2) bits to encode these αm. The number of bits RG to encode the flows
is the sum of these values over all squares where a flow is defined plus the number of
bits required to specify the scale.

In a bandelet frame F = {bi,m}i,m, all bandelet coefficients 〈f, bi,m〉 are uniformly
quantized with a uniform quantizer QT of step T :

QT (x) = qT if (q − 1/2)T ≤ x < (q + 1/2)T with q ∈ Z .

The indices i,m of the MB non-zero quantized coefficients are encoded together with
the value QT (〈f, bi,m〉) 6= 0. The proof of Theorem 4.3 shows that the MB non-zero
quantized bandelet coefficients whose amplitude is larger than T appear at a scale
larger than C−1

ψ ‖f‖−1
∞ T . Since there are C2

ψ ‖f‖2∞ T−2 such coefficients, to encode

an index i,m is equivalent to encode an integer in [1, C2
ψ ‖f‖2∞ T−2] which requires

log2(C2
ψ ‖f‖2∞ T−2) bits. Since |〈f, bi,m〉| ≤ ‖f‖, each non-zero quantized coefficient is
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encoded with d| log2(‖f‖/T )|e bits. The total number of bits to encode the quantized
bandelet coefficients thus satisfies

RB ≤MB (d| log2(‖f‖/T )|e+ log2(C2
ψ ‖f‖2∞ T−2)) . (5.2)

The image restored from its bandelet coefficients is

fR =
∑

i,m

QT (〈f, bi,m〉) b̃i,m (5.3)

and the resulting distortion is D(R) = ‖f − fR‖2. Since f − fR =
∑

i,m(〈f, bi,m〉 −
QT (〈f, bi,m〉)) b̃i,m we derive from (4.6) that

D(R) = ‖f − fR‖2 ≤
∑

i,m

|〈f, bi,m〉 −QT (〈f, bi,m〉)|2 . (5.4)

For the MB non-zero quantized coefficients, we have |x−QT (x)|2 ≤ T 2/4 so

D(R) ≤
∑

i,m
|〈f,bi,m〉|≤T/2

|〈f, bi,m〉|2 +MBT
2/4 (5.5)

D(R) ≤ L(f, T/2,F) (5.6)

This proves that a small distortion rate can be obtained by finding a best bandelet
frame in DT 2 that minimizes L(f, T/2,F). The following theorem computes the
resulting decay of D(R) as a function of R for a geometrically regular image in a best
bandelet frame.

Theorem 5.1. Let f be a Cα geometrically regular function and α < p. There
exists C that only depends upon the edges geometry such that for any T > 0 coding f
in a best bandelet frame that minimizes L(f, T/2,F) over DT 2 yields a distortion-rate
that satisfies

D(R) = ‖f − fR‖2 ≤ C C2
f max(1, `C)

α+1R−α | log2R|α+1 (5.7)

with R ≤ C C2/(α+1)
f max(1, `C)T

−2/(α+1)| log2(T )| , (5.8)

where Cf = max(‖f̃‖Cα(Λ) max(‖c‖αCα , 1)2, ‖c‖Cα , ‖f̃‖α+1
C1(Λ)) and `C is the total length

of the edge curves.
Proof. [Theorem 5.1]
The compressed image fR is given by (5.3) in the bandelet frame that minimizes

L(f, T/2,F)).
To bound the distortion D(R), we use Lemma 4.4 that proves that the best

bandelet frame in DT 2 satisfies

L(f, T/2,F)) ≤ C C2/(α+1)
f max(1, `C)T

2α/(α+1) . (5.9)

Inserting this bound in (5.6) implies

D(R) ≤ C C2/(α+1)
f max(1, `C)T

2α/(α+1) . (5.10)
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The corresponding bit rate R is decomposed in (5.1) in 3 terms: RS the number
of bits to encode the dyadic square segmentation, RG the number of bits to encode
the flow in each square region and RB the number of bits to encode the quantized
bandelet coefficients.

As the number of splits that specify the best segmentation is of order logT as
shown in Lemma 4.5, RS is bounded by the same quantity. The specification of the
flow requires a flow/no flow bit for each square. For the squares of size 2λ with a
flow , log2 λ ≤ log2 log2(C2

ψ ‖f‖2∞ T−2) bits are needed to specify the scale 2k and

2λ−k log2(Cθ T
−2) for the quantized coefficients. As shown in Lemma 4.5, there are

at most log T squares and at most T−2 T 2α/(α+1) quantized coefficients so RG satisfies

RG ≤ log2 T (1 + log2 log2(C2
ψ ‖f‖2∞ T−2)) + T−2 T 2α/(α+1) log2(Cθ T

−2) . (5.11)

Lemma 4.4 implies that the number of non-zero bandelets coefficients MB satisfies

MB ≤ C C2/(α+1)
f max(1, `C)T

−2 T 2α/(α+1) . (5.12)

Inserting this bound in (5.2), one obtains

RB ≤ C C2/(α+1)
f max(1, `C)T

−2 T 2α/(α+1)(d| log2(‖f‖/T )|e+ log2(Cψ ‖f‖2∞ T−2)) .

(5.13)

We thus have

R = RS +RG +RB (5.14)

R ≤ C C2/(α+1)
f max(1, `C)T

−2/(α+1)| log2(T )| . (5.15)

To conclude, one can verify that inserting this bound in (5.10) yields

D(R) ≤ C C2
f max(1, `C)

α+1 R−α| log2(R)|α+1 . (5.16)

This theorem proves that the asymptotic decay of a bandelet transform code
reaches the Kolmogorov lower bound up to the | log2R|α+1 term. Indeed the class of
images that we consider include the class of images that are Cα over [0, 1]2 and we
known that for such a class of images the Kolmogorov lower bound of the distortion
rate decays like R−α [10].

6. Discretized Image and Discretized Bandelets.

6.1. Discrete Orthogonal Bandelet Bases. A discrete image measured by a
CCD camera is an array of pixels obtained by averaging the input analog intensity
f(x1, x2) over square photo-receptors. We thus do not have access to f but we explain
how to compute discrete bandelet coefficients from these pixels, with a fast algorithm.

At a discretization scale ε, a receptor covers a square of surface ε2. Let 1n1,n2(x)
be the indicator function of the square [n1 , n1 + 1]× [n2 , n2 + 1]. A pixel value is the
average of f(x1, x2) over the photoreceptor surface multiplied by a renormalization
factor ε. The resulting discretized image values are

f [n1, n2] = ε−1 〈f(x) , 1n1,n2(ε−1 x)〉 = ε−1

∫ ∫
f(x1, x2) 1n1,n2(ε−1 x1, ε

−1 x2) dx1 dx2

(6.1)
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for 0 ≤ n1, n2 ≤ ε−1. This choice of renormalization for the average ensures ||f‖ '
‖f‖. In the following we shall suppose that ε−1 is an integer.

Discretized orthogonal bandelets are defined with the same approach as in Sec-
tion 3.1. Suppose that the analog image f(x1, x2) has a single horizontal edge along
a curve C : an edge with tangents having an angle smaller than π/3 with the horizon-
tal. We define a vertically parallel flow that approximates the tangents of this edge
~τ (x1, x2) = ~τ (x1) = (1, g′(x1)). We suppose that the flow integral g(x) =

∫ x
0
g(t)dt is

parameterized in a basis of scaling functions according to (3.15).

The continuous variable warping operator W in (3.3) is approximated by a dis-
cretized warping operator that operates over the image sampling grid:

Wf [n1, n2] = f [n1, n2 + dε−1g(ε n1)e] , (6.2)

where dxe is the integer just above x. As in (3.2), a band B parallel to this flow is
defined from this warping over the sampling grid by:

B =
{

(n1, n2) : n1 ∈ [a1, b1], n2 ∈ [dε−1g(ε n1)e+ a2 , dε−1g(ε n1)e+ b2]
}

(6.3)

so that C ⊂ B.

If f has a support in B then Wf has a support in WB which is a rectangle whose
sides are horizontal and vertical. The discrete separable orthonormal wavelet basis
over the rectangle WB can be written:

{
φj,m1

[n1]ψj,m2
[n2] , ψj,m1

[n1]φj,m2
[n2]

, ψj,m1
[n1]ψj,m2

[n2]

}

(j,m1,m2)∈I
WB

. (6.4)

The operator W is orthogonal and hence

{
W
−1
φj,m1

[n1]ψj,m2
[n2] , W

−1
ψj,m1

[n1]φj,m2
[n2]

, W
−1
ψj,m1

[n1]ψj,m2
[n2]

}

(j,m1,m2)∈I
WB

(6.5)

is an orthonormal wavelet basis of signals defined in the band B. Using the fact

that 〈Wf,Ψ〉 = 〈f,W−1
Ψ〉 the discrete warped wavelet transform of f is computed

with the fast discrete wavelet transform of Wf , which requires O(#Bε−2) operations
where #B is the surface of the band B.

As in Section 3.1, the bandeletization replaces the discrete warped wavelets

{W−1
φj,m1

[n1]ψj,m2
[n2]}m1,m2 that do not have any vanishing moments along n1 by a

corresponding equivalent family of discrete bandelets {W−1
ψl,m1

[n1]ψj,m2
[n2]}l>j,m1,m2

that have vanishing moments along the first coordinate (n1). The bandelet coefficients
of f are computed by applying a one-dimensional discrete wavelet transform over the
corresponding warped wavelet coefficients of f , which also requires O(#B ε−2) oper-
ations. Algorithmic details are given in [14].

If the edge C has an angle smaller than π/3 with the vertical direction, then we
define a flow that is parallel horizontally. By transposing the procedure previously
described and exchanging n1 and n2, a similar bandelet orthonormal basis is calculated
over a band B parallel to this flow.

In the following, a discrete bandelet basis with a horizontally parallel or vertically
parallel flow is written B = {bm}m.
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6.2. Approximation in a Best Discrete Bandelet Frame. A discrete ban-
delet frame is defined as a union of discrete orthogonal bandelet bases constructed
over the regions of a dyadic square image segmentation: [0, 1]2 = ∪iΩi. This section
proves that the approximation result of Theorem 4.3 remains valid for discrete images
decomposed in a discrete bandelet frame.

In each square Ωi, we either construct a separable discrete wavelet basis or a
bandelet basis over the smallest band Bi including Ωi and which is parallel to the flow
in Ωi. One can verify that #Bi ≤ 3#Ωi. The wavelet or bandelet basis associated
to Ωi is written Bi = {bi,m}m and the union of these bases F = ∪iBi is a discrete
frame. The corresponding discrete wavelet or bandelet coefficients of f are computed
with a fast algorithm that requires O(#Ωiε

−2) operations. Since
∑

i #Ωi = 1 the fast
transforms over all dyadic squares of [0, 1]2 requires O(ε−2) operations.

Let PΩi be the orthogonal projector over signals having a support in Ωi. We
verify, as in Proposition 4.1, that

f =
∑

i,m

〈f, bi,m〉PΩibi,m (6.6)

and

‖f‖2 ≤
∑

i,m

|〈f, bi,m〉|2 . (6.7)

An approximation fM is obtained by keeping all coefficients above a threshold T :

fM =
∑

i,m

|〈f,bi,m〉|≥T

〈f, bi,m〉PΩibi,m . (6.8)

The total number of parameters is M = MS +MG +MB where MS is the number of
parameters describing the segmentation, MG is the number of geometric parameters
describing the flow and MB is the number of bandelet coefficients above T .

To minimize the error ‖f − fM‖, as in Section 4.2, we search for a best bandelet
frame which minimizes the Lagrangian:

L(f, T,F) =
∑

bi,m∈F
|〈f,bi,m〉|<T

|〈f, bi,m〉|2 + T 2M with M = MS +MG +MB . (6.9)

The complexity of the best bandelet frame search in Section 4.2 is driven by the
complexity to find the best geometric flow in a square, which is exponential. This
exponential complexity makes it impossible to use such a best bandelet search algo-
rithm in numerical computations. A polynomial complexity algorithm is introduced
by choosing geometric flows that are piecewise polynomial.

In the bandelet dictionary of Section 4.2, over a square Ω of size 2λ, the flow is
parameterized in a family of scaling functions (3.15) at a scale 2k. We replace such a
flow by a piecewise polynomial flow over the 2λ−k intervals of sizes 2k:

∀r ∈ Z with 1 ≤ r ≤ 2λ−k , ∀t ∈ [r2k , (r + 1)2k) , g(t) =

p∑

n=1

αr,n θn(2−kt− r) ,

(6.10)
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where {θn}1≤n≤p is an orthogonal basis of the space of polynomials of degree p over
[0, 1] and which vanish at 0. However, instead of considering this as a single flow in the
square Ω of width 2λ, we shall view it as a subdivision of Ω into 2λ−k rectangles Ωr of
length 2λ and width 2k, inside each of which the flow is a polynomial parameterized
by {αn,r}1≤n≤p.

To construct an image partition, we first begin with a dyadic square segmen-
tation [0, 1]2 = ∪iΩi. If Ωi has a geometric flow, then it is subdivided into 2ki

sub-rectangles Ωi,r having polynomial geometric flows. An orthogonal bandelet basis
Bi,r = {bi,r,m}m is defined over each band Bi,r associated to a sub-rectangle Ωi,r.
The union of these bandelet orthogonal bases defines a bandelet frame F i over Ωi:

F i = ∪2λ−k
r=1 Bi,r. If Ωi has no geometric flow then F i is the discrete separable wavelet

basis defined over Ωi. The union of these families of bandelets for all Ωi defines a
bandelet frame F = ∪iF i over the image support such that

f =
∑

bi,r,m∈F

〈f, bi,r,m〉PΩi,r bi,r,m (6.11)

and

‖f‖2 ≤
∑

bi,r,m∈F

|〈f, bi,r,m〉|2 . (6.12)

The geometric resolution is limited to T 2 by imposing that the size of each square Ωi

and each rectangle Ωi,r is larger than T 2, and that the flow parameters {αr,n}1≤n≤p
are quantized uniformly with a step equal to T 2. Since |g′(t)| ≤ 2 one can verify
that |αr,n| ≤ 2k so after quantization it can take C 2k+1 T−2 possible values. As
a consequence, there are O(2kT−2p) different polynomial flows over each Ωi,r. We
denote by DT 2 the dictionary of all such bandelet frames.

To find the bandelet frame which minimizes the Lagrangian we use a CART
algorithm that takes advantage of the additivity of the Lagrangian:

L(f, T,F) =
∑

i

L(f, T,F i) (6.13)

with

L(f, T,F i) =
∑

bi,m∈Fi
|〈f,bi,m〉|<T

|〈f, bi,m〉|2 +MS,i +MG,i +MB,i (6.14)

where MS,i is a proportion of the nodes used to specify the segmentation of Ωi, MG,i is
the number of parameters to specify the geometric flow in Ωi and MB,i is the number
of bandelet coefficients |〈f, bi,m〉| ≥ T . As any node is shared by the children of their

four subtrees, MS,i =
∑`i−1

j=0 4`i−j and one verifies that
∑

iMS,i = MS .
For each dyadic square Ωi, the CART algorithm first computes the optimal geo-

metric flow and the resulting best bandelet frame F i which yields a minimum value
L(f, T,F i). Then a bottom-up CART optimization uses the additivity (6.13) to find
the best dyadic partition ∪iΩi of the image support [0, 1]2. When going up the tree, at
each node corresponding to a square Ωi, the minimum Lagrangian value L(f, T,F i)
calculated on Ωi is compared with an optimal sum of Lagrangian values correspond-
ing to the four subsquares. The minimum of these two is kept and associated to Ωi,
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with the corresponding best segmentation configuration. Appendix C proves that the
complexity of this algorithm is polynomial in O(ε−2 T−2p). The exponent p of this
polynomial complexity algorithm depends upon maximum the degree of the polyno-
mial flows. In the following, we shall suppose that p to be equal to the number of
vanishing moments p of the wavelet ψ that is used to construct the bandelet bases.

Despite the image discretization, the following theorem proves that the best ban-
delet frame computed with piecewise polynomial flows yields an approximation error
that has the same optimal asymptotic decay as in Theorem 4.3, up to a logarithmic
factor.

Theorem 6.1. Let f be a Cα geometrically regular function and f be its dis-
cretization at a scale ε. For any γ > 0, there exists a constant Cγ that only depends
upon the edges geometry and γ such that for any T ≥ γε1/2 the discrete best bandelet
frame in DT 2 yields an approximation fM that satisfies

‖f − fM‖2 ≤ Cγ C2
f max(1, `C)

α+1M−α(log2M)α+1 (6.15)

with

M ≤ Cγ C2/(α+1)
f max(1, `C)T

−2/(α+1)| log2 T | , (6.16)

were Cf = max(‖f̃‖Cα(Λ) max(‖c‖αCα , 1)2, ‖c‖(α+1)/(2α)
Cα , ‖f̃‖α+1

C1(Λ)). and `C is the total

length of the curves.
One could note that if T 2α/(α+1)| log2 T | ≤ s a stronger result holds as the loga-

rithmic factor disappears.
Proof. [Theorem 6.1]

To prove (6.15), it is sufficient to prove the existence of a discrete frame F ′ such
that

L(f, T,F ′) ≤ Cγ C2/(α+1)
f max(1, `C)T

2α/(α+1) | log2 T | . (6.17)

Indeed as in the proof of Theorem 4.3, the best frame F thus also satisfies

L(f, T,F) ≤ Cγ C2/(α+1)
f max(1, `C)T

2α/(α+1) | log2 T | . (6.18)

This implies

‖f − fM‖2 ≤ Cγ C2/(α+1)
f max(1, `C)T

2α/(α+1)| log2 T | (6.19)

and M ≤ Cγ C2/(α+1)
f max(1, `C)T

−2/(α+1) | log2 T | . (6.20)

Inserting (6.20) in (6.19) concludes

‖f − fM‖2 ≤ Cγ C2
f max(1, `C)

α+1M−α (log2M)α+1 . (6.21)

The proof of the existence of a bandelet frame F ′ of discrete images that satis-
fies (6.17) relies on the existence of a bandelet frame F ′ of L2[0, 1]2 that satisfies a
condition similar to (6.17), which is given by the following lemma.

Lemma 6.2. Under the hypotheses of Theorem 6.1, there exists a constant C that
depends upon the edges such that, for any T , one can construct a bandelet frame F ′
of L2[0, 1]2 satisfying

L(f, T,F ′) ≤ C C2/(α+1)
f max(1, `C)T

2α/(α+1) | log2 T | (6.22)
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with a number of edge rectangles bounded by C `C T−2/(α+1).

The following lemma shows that the corresponding discrete frame F ′ obtained
with the same geometry is closely related to the continuous frame: both frames yield
bandelet coefficients that are close.

Lemma 6.3. There exists a constant C that depends upon the edges geometry
such that

∑

i,m

|〈f, bi,m〉 − 〈f, bi,m〉|2 ≤ C (‖f̃‖∞ `C + ‖f̃‖C2(Λ) ε) ε . (6.23)

To prove (6.17) let us consider J ′ = {(i,m), |〈f, bi,m〉| ≥ T} and

L(f, T,F) ≤
∑

(i,m)/∈J′
|〈f, bi,m〉|2 + T 2Card (J) + T 2(MS +MG) (6.24)

≤ 2


 ∑

(i,m)/∈J′
|〈f, bi,m〉|2 + T 2Card (J) + T 2(MS +MG)

+
∑

(i,m)/∈J′
|〈f, bi,m〉 − 〈f, bi,m〉|2


 .

(6.25)

Using Lemma 3.10 and JT = {(i,m), |〈f, bi,m〉| ≥ T}, we get

≤ 2


 ∑

(i,m)/∈JT
|〈f, bi,m〉|2 + T 2Card (JT ) + T 2(MS +MG)

+
∑

(i,m)/∈J′
|〈f, bi,m〉 − 〈f, bi,m〉|2




(6.26)

L(f, T,F) ≤ 2(L(f, T,F ′) +
∑

i

∑

n

|〈f, bi,m〉 − 〈f, bi,m〉|2). (6.27)

Inserting (6.22) and (6.23) in (6.27) yields (6.17) as by hypothesis ε is majored by
γ2T 2.

The proof of Lemma 6.2 itself is very similar to the one of Lemma 4.4 up to the
segmentation. The edge squares are first subdivided in smaller squares of size smaller
than η1/(2α) in order to avoid some too anisotropic structure. The resulting edge

squares are further subdivided in rectangle of width smaller than max(‖c‖−1/α
Cα , 1) η1/α

to allow the use of a polynomial flow. This subdivision yields the logarithmic term of
the lemma: on each such rectangle, the number of required bandelets coefficients is
of order log2 T while the total number of these rectangles is of order `Cη−1/α.

The condition T ≥ γε1/2 of Theorem 6.1 is a consequence of Lemma 6.3 which
controls the differences between the discrete bandelet coefficients of the discrete image
and the bandelet coefficients of the original analog image. From the discretization
process (6.1) any linear reconstruction of the samples yields a square error with respect
to f that can only be bounded by an order of ε. Indeed, f can be discontinuous along
curves whose locations are unknown. Since we are using a linear warping operator,
we can not reduce this error.
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Numerically, in the regular regions of f , the discrete bandelet scheme is improved
if we replace the 0 order interpolation of (6.2) with an higher order interpolation[14].
Unfortunately, this destroys the energy conservation properties of the bandelet basis
proposed here, and it does not improve the asymptotic decay of the error because of
the presence of discontinuities.

The choice of a L2 normalized averaging for the discretization can be relaxed:
the result holds indeed for any f̄ [n1, n2] = f ? φε(n1ε, n2ε) with φε a local averaging
function defined from a compactly supported function φ such that ‖φ‖2 = 1 and
‖φ‖1 = 0 by φε(x1, x2) = ε−1φ(x1, x2). A possible choice for φ is thus a compactly
supported scaling function associated to a wavelet[11].

This theorem provides a constructive approximation scheme with a polynomial
complexity and a decay rate optimal up to a logarithmic factor. As in Section 5, this
implies a compression result. The same coding strategy can be used in this context
and the logarithmic factor of Theorem 6.1, which does not appear in Theorem 4.3,
just modifies the exponent of the |logR| factor. Under the hypotheses of Theorem 6.1,
we get:

D(R) ≤ CC2
f max(1, `C)

α+1R−α| logR|2α+1 . (6.28)

Hence, the distortion rate of the discrete bandelet coder reaches the Kolmogorov lower
bound R−α up to a logarithmic factor | log2(R)|2α+1.

As in Theorem 4.3, the choice of a different basis in each square region yields
a fast algorithm to optimize the geometry, but this can create discontinuities at the
boundaries of the region. An implementation of the bandelet transform in [14] over-
comes this difficulty with an adapted lifting scheme, for which there is no proof of
optimality.

Finally, although the algorithm is polynomial, it is still computationally intensive
and most of the bandelets algorithm implementation[14] replace the full geometry
exploration with a faster geometry exploration obtained from a geometry estimation
similar to the one described in Section 3.2. As long as the jumps of the discontinuities
do not vanished to zero, the estimation remains precise enough to obtain a good
geometry. The corresponding optimization algorithm yields an error decay of order
M−α with a low order polynomial complexity.

Appendix A. Proofs of Lemmas for Theorem 3.2.

A.1. Lemma 3.4: The outer bandelets. Proof. [Lemma 3.4]

We saw in (3.5) and (3.10) that

〈f, bl,j,m〉 = 〈f(x1, x2 + g(x1)), ψl,m1(x1)ψj,m2(x2)〉 . (A.1)

Furthermore since f = f̃ ? h and f̃ is uniformly Cα over the convolution domain
as long as we remain away from the smoothed singularity

‖f‖Cα((x1,x2)) ≤ ‖h‖1 ‖f̃‖Cα(Λ) . (A.2)

where ‖f‖Cα((x1,x2)) is the Hölder norm of exponent α at the point (x1, x2). As

‖h‖Cα ≤ s−(2+α) implies ‖h‖1 ≤ 1,

‖f‖Cα((x1,x2)) ≤ ‖f̃‖Cα(Λ) . (A.3)
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Now (A.3) yields along x1

|∂
TαUWf

∂x
TαU
1

(x′1, x2)− ∂TαUWf

∂x
TαU
2

(x1, x2)| ≤ ‖f̃‖Cα(Λ) max(‖c‖αCα , 1)|x′1 − x1|α−TαU

(A.4)

and along x2

|∂
TαUWf

∂x
TαU
2

(x1, x
′
2)− ∂TαUWf

∂x
TαU
2

(x1, x2)| ≤ ‖f̃‖Cα(Λ) |x′2 − x2|α−TαU (A.5)

Using the vanishing moments of the wavelets along either x1 or x2 in (A.1) and
since l ≥ j,

|〈f, bl,j,m〉| ≤ C ‖f̃‖Cα(Λ) max(‖c‖αCα , 1) 2j/2 2(α+1/2)l (A.6)

|〈f, bl,j,m〉| ≤ C Cf 2j/2 2(α+1/2)l . (A.7)

Indeed, assume bl,j,m(x1, x2) = ψl,n1(x1)ψj,n2(x2 − g(x1)) (the case bl,j,m(x1, x2) =
ψl,n1(x1)φj,n2(x2 − g(x1)) is similar),

〈f, bl,j,m〉 =

∫∫
Wf(x1, x2)ψl,n1(x1)ψj,n2(x2 − g(x1))dx1dx2 (A.8)

with a sequence of integration by parts

= (−1)TαU
∫∫

∂TαU

∂x
TαU
1

Wf(x1, x2)2lαψ
[TαU]
l,n1

(x1)ψj,n2(x2 − g(x1))dx1dx2

(A.9)

where ψ[TαU] is the primitive of ψ of order TαU which still has a vanishing moment.
We thus have for x′1 = 2ln1, which is in the support of the wavelet ψl,n1 ,

= (−1)TαU
∫∫ (

∂TαU

x
TαU
1

Wf(x1, x2)− ∂TαU

∂x
TαU
1

Wf(x′1, x2)

)

× 2lαψ
[TαU]
l,n1

(x1)ψj,n2(x2 − g(x1))dx1dx2

(A.10)

which gives the bound (A.6) when combined with (A.4) and ‖ψ[d]
l,n1
‖1 = 2α/2‖ψ[d]‖1

for any d.

Let J = {(l, j,m) : bl,j,m ∈ B1},

J ′ = {(l, j,m) ∈ J : C Cf 2j/2 2(α+1/2)l ≥ T} (A.11)

and

JT = {(l, j,m) ∈ J : |〈f, bl,j,m〉| ≥ T} , (A.12)

we verify that JT ⊂ J ′.
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Since there are at most max(`1 2−l,K) ×max(`2 2−j ,K) bandelets in B1 at the
scale of index (l, j), where K is the size of the support of ψ, one can verify with a
summation over l and j that

Card (J ′) ≤
∑

l,j

C Cf 2j/2 2(α+1/2)l≥T

max(`1 2−l,K)×max(`2 2−j ,K) (A.13)

Card (J ′) ≤ C max(`1 `2 C
2/(α+1)
f T−2/(α+1),K2) (A.14)

so

Card (JT ) ≤ C max(`1 `2 C
2/(α+1)
f T−2/(α+1),K2) (A.15)

Combining the bound on the number of coefficients with (A.7) yields for any scale
of index (l, j)

∑

m

|〈f, bl,j,m〉|2 ≤ C `1 `2C2
f 22αl (A.16)

Summing over l and j, it results that

∑

(l,j,m)/∈J′
|〈f, bl,j,m〉|2 ≤

∑

l,j

C Cf 2j/2 2(α+1/2)l≤T

C `1 `2C
2
f 22αl (A.17)

∑

(l,j,m)/∈J′
|〈f, bl,j,m〉|2 ≤ C `1 `2 C2/(α+1)

f T 2α/(α+1) . (A.18)

Now

∑

(l,j,m)/∈JT
|〈f, bl,j,m〉|2 =

∑

(l,j,m)/∈J′
|〈f, bl,j,m〉|2 +

∑

(l,j,m)∈J′\JT
|〈f, bl,j,m〉|2 (A.19)

and as (l, j,m) ∈ J ′ \ JT implies |〈f, bl,j,m〉| ≤ T

≤
∑

(l,j,m)/∈J′
|〈f, bl,j,m〉|2 + Card (J ′)T 2 . (A.20)

Inserting (A.13) and (A.17) concludes

∑

(l,j,m)/∈JT
|〈f, bl,j,m〉|2 ≤ C `1 `2C2/(α+1)

f T 2α/(α+1) . (A.21)

A.2. Lemma 3.5: the inner bandelets. Proof. [Lemma 3.5]
Let J = {(l, j,m) : bl,j,m ∈ B2} and JT = {(l, j,m) ∈ J : |〈f, bl,j,m〉| ≥ T}.
In this proof, the bandelets bl,j,m ∈ B2 are separated according to the scale 2j in

four categories: 2j ≤ 2j? with

2j? = C C
−1/(α+1)
f s (T 2α/(α+1)s−1)1/(2α) , (A.22)
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2j? ≤ 2j ≤ s, s ≤ 2j ≤ s1/α and s1/α < 2j .
We first prove that the total energy of the bandelet coefficients 〈f, bl,j,m〉 with

j ≤ j? is small:

∑

(l,j,m)∈J
j≤j?

|〈f, bl,j,m〉|2 ≤ C C2/(α+1)
f `1 T

2α/(α+1) . (A.23)

On one hand, as JT is a subset of J , (A.23) implies

∑

(l,j,m)/∈JT
j≤j?

|〈f, bl,j,m〉|2 ≤ C C2/(α+1)
f `1 T

2α/(α+1) . (A.24)

On the other hand, as (l, j,m) ∈ JT implies |〈f, bl,j,m〉| ≥ T , (A.23) also implies

Card ({(l, j,m) ∈ JT , j ≤ j?}) ≤ C C2/(α+1)
f `1 T

−2/(α+1) . (A.25)

To prove (A.23), we use that the bandelets bl,j,m with j ≤ j? are obtained with
an orthogonal change of bases from warped wavelets of scale 2j ≤ 2j? as described
in section 4.1 so the energy of the corresponding bandelet coefficients is bounded by
the one of the wavelet coefficients. Let {Ψd

j,m} be the wavelet basis of B, where Ψd
j,m

stands for φj,m1(x1)ψj,m2(x2), ψj,m1(x1)φj,m2(x2), ψj,m1(x1)ψj,m2(x2) depending on
d ∈ {1, 2, 3}, and define

J? = {(j,m) : , j ≤ j?} . (A.26)

As the space generated by {bl,j,m : j ≤ j?} is included in the space generated
by {Ψd

j,m : j ≤ j?}, one verifies that

∑

(l,j,m),j≤j?
|〈f, bl,j,m〉|2 ≤

∑

(j,m)∈J?
|〈f,W−1Ψd

j,m〉|2 . (A.27)

To prove (A.23), it is thus sufficient to prove that

∑

(j,m)∈J?
|〈f,W−1Ψd

j,m〉|2 ≤ C C2/(α+1)
f `1 T

2α/(α+1) (A.28)

or equivalently, as 〈f,W−1Ψd
j,m〉 = 〈Wf,Ψd

j,m〉,
∑

(j,m)∈J?
|〈Wf,Ψd

j,m〉|2 ≤ C C2/(α+1)
f `1 T

2α/(α+1) . (A.29)

In B, one can verify that Wf has the same regularity as f . Three different kinds
of wavelets are distinguished in (A.29):

• The wavelets that do not intersect the smoothed singularities: there are at
most `1 `2 2−2j such wavelets at the scale 2j and the bound (A.4)and (A.5)
on Wf implies

|〈Wf,Ψd
j,m〉| ≤ C ‖f̃‖Cα(Λ) max(‖c‖αCα , 1) 2(α+1)j (A.30)

|〈Wf,Ψd
j,m〉| ≤ C Cf 2(α+1)j . (A.31)
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• The wavelets that do intersect the singularities with a scale 2j ≥ s: there are
at most C `1 2−j such wavelets at the scale 2j and, using ‖Wf‖∞ ≤ ‖f‖∞ ≤
‖f̃‖∞, one verifies

|〈Wf,Ψd
j,m〉| ≤ C ‖f̃‖∞ 2j (A.32)

|〈Wf,Ψd
j,m〉| ≤ C Cf 2j . (A.33)

• The wavelets that do intersect the singularities with a scale 2j ≤ s: there are
at most C `1 s 2−2j such wavelets at the scale 2j and, as f = f̃ ? h and h is
Cα, we get

‖f‖Cα(Ωi) ≤ ‖f̃‖∞ s2 ‖h‖Cα ≤ Cd ‖f̃‖∞ s−α (A.34)

so yields

|〈Wf,Ψd
j,m〉| ≤ C Cf s−α 2(α+1)j . (A.35)

Combining (A.31), (A.33) and (A.35) with the respective bounds on the number of
coefficients gives bounds on the energy of the coefficients that eventually yields (A.29).

The remaining bandelets are the one that intersect the smoothed singularities at
a scale j ≥ j? and the corresponding coefficients are controlled with the regularity of
the geometry.

As stated in the proof of Theorem 3.2, Lemma 3.7 implies when |x′1−x1| ≤ Ks1/α

∣∣∣∣∣
∂TαUWf

∂x
TαU
1

(x′1, x2)− ∂TαUWf

∂x
TαU
1

(x′1, x2)

∣∣∣∣∣ ≤ C ‖f̃‖Cα(Λ) max(‖c‖αCα , 1)

×max(‖c‖αCα , Cαd , 1)2 s−1|x′1 − x1|α−TαU
(A.36)∣∣∣∣∣

∂TαUWf

∂x
TαU
1

(x′1, x2)− ∂TαUWf

∂x
TαU
1

(x′1, x2)

∣∣∣∣∣ ≤ C Cf s
−1|x′1 − x1|α−TαU . (A.37)

Using the vanishing moment of the bandelets and the size of their support, (A.37)
implies

〈f(x1, x2), bl,j,m〉| ≤ C Cf s−1 2(α+1/2)l 2j/2 . (A.38)

which is sufficient for s ≥ 2j ≥ 2j? .
Let J− = {(l, j,m) ∈ J : s ≥ 2j ≥ 2j? , C Cf s

−1 2(α+1/2)l 2j/2 ≥ T}. The
number of bandelets is max(`1 2−l,K) max(s 2−j ,K) at each scale, summing over l
and j yields

Card (J−) ≤ max(C C
2/(α+1)
f `1 T

−2/(α+1), |j?|) . (A.39)

Using (A.38), we obtain for each scale of index (l, j)

∑

m

|〈f, bl,j,m〉|2 ≤ C `1 C2
f s
−1 22αl (A.40)

and thus by a summation over l and j
∑

(l,j,m)/∈J−,s≥2j≥2j?

|〈f, bl,j,m〉|2 ≤ C C2/(α+1)
f `1 T

2α/(α+1) . (A.41)
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As, if s ≥ 2j ≥ 2j? , (l, j,m) /∈ JT implies (l, j,m) /∈ J or (l, j,m) ∈ J and |〈f, bl,j,m〉| ≤
T , combining (A.39) and (A.41) implies

∑

(l,j,m)/∈JT ,s≥2j≥2j?

|〈f, bl,j,m〉|2 ≤
∑

(l,j,m)/∈J,s≥2j≥2j?

|〈f, bl,j,m〉|2

+
∑

(l,j,m)∈J\JT ,s≥2j≥2j?

|〈f, bl,j,m〉|2
(A.42)

∑

(l,j,m)/∈JT ,s≥2j≥2j?

|〈f, bl,j,m〉|2 ≤ C C2/(α+1)
f `1 T

2α/(α+1) (A.43)

and as (l, j,m) ∈ JT implies |〈f, bl,j,m〉| ≥ T and (i, j,m) ∈ J−

Card
(
{(l, j,m) ∈ JT , s ≥ 2j ≥ 2j?}

)
≤ C max(C

2/(α+1)
f `1 T

−2/(α+1), |j?|) .

(A.44)

Away from the smoothed singularity, f is regular and we still have when |x′1−x1| ≤
Ks1/α

∣∣∣∣∣
∂TαUWf

∂x
TαU
1

(x′1, x2)− ∂TαUWf

∂x
TαU
1

(x′1, x2)

∣∣∣∣∣ ≤ C‖f̃‖Cα(Λ) max(‖c‖αCα , 1)|x′1 − x1|α−TαU

(A.45)∣∣∣∣∣
∂TαUWf

∂x
TαU
1

(x′1, x2)− ∂TαUWf

∂x
TαU
1

(x′1, x2)

∣∣∣∣∣ ≤ C Cf |x
′
1 − x1|α−TαU . (A.46)

Combining this bound and (A.37) with the definition of the bandelets solves the third
case.

Indeed,

〈f(x1, x2), bl,j,m〉 =

∫

x1

∫

x2

f(x1, x2 + g(x1))ψl,m1(x1)dx1ψj,m2(x2)dx2 (A.47)

so, splitting the integral depending on the distance along x2 from the curve ,

|〈f(x1, x2), bl,j,m〉| ≤
∫

x2,|x2|≤4 s

∣∣∣∣
∫

x1

f(x1, x2 + g(x1))ψl,m1 (x1)dx1

∣∣∣∣ |ψj,m2(x2)| dx2

+

∫

x2,|x2|≥4 s

∣∣∣∣
∫

x1

f(x1, x2 + g(x1))ψl,m1(x1)dx1

∣∣∣∣ |ψj,m2(x2)| dx2

(A.48)

using respectively (A.37) and (A.46) and the vanishing moments of the wavelets

≤
∫

x1,|x1|≥4 s

C Cf2(α+1/2)l |ψj,m2(x2)|dx2

+

∫

x2,|x2|≤4 s

C Cf s
−12 (α+1/2)l|ψj,m2(x2)|dx2

(A.49)

|〈f(x1, x2), bl,j,m〉| ≤ C Cf 2(α+1/2)l2−j/2 . (A.50)
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Let J+ = {(l, j,m) ∈ J : s1/α ≥ 2j ≥ s , C Cf 2(α+1/2)l 2−j/2 ≥ T}. As the
number of inner bandelets is max(`1 2−l,K) at each scale, where K is the size of the
support of ψ, a summation over l and j gives

Card (J+) ≤ max(C C
2/(α+1)
f `1 T

−2/(α+1),K| log2 s|) . (A.51)

With (A.50), a bound on the energy of the coefficients at a given scale is obtained.
Summing over l and j yields

∑

(l,j,m)/∈J+,2j≥s
|〈f(x1, x2), bl,j,m〉|2 ≤ C C2/(α+1)

f `1 T
−2α/(α+1) . (A.52)

As,if 2j ≥, (l, j,m) /∈ JT implies (l, j,m) /∈ J or (l, j,m) ∈ J and |〈f, bl,j,m〉| ≤ T , we
verify that this implies

∑

(l,j,m)/∈JT ,2j≥s
|〈f, bl,j,m〉|2 ≤ C C2/(α+1)

f `1 T
2α/(α+1) (A.53)

and as (l, j,m) ∈ JT implies |〈f, bl,j,m〉| ≥ T

Card
(
{(l, j,m) ∈ JT , 2j ≥ s}

)
≤ C C2/(α+1)

f `1 T
−2/(α+1) . (A.54)

Finally there are less than max(l1s
−1/α,K) bandelets above the scale s1/α, so

combining (A.24), (A.43) and (A.53) as well as (A.25), (A.44) and (A.54) finishes the
proof.

A.3. Lemma 3.6: Regularity of the approximated curve. Proof. [Lemma 3.6]
Given any geometry g that is closer than s from a Cα curve c, we will show that a
suitable projection of g will satisfy all the conditions. Now, let πx0 be the Taylor
polynomial of order TαU of c at x0

c− PVk
g = (c− PVk

(πx0)) + (PVk
(πx0)− PVk

(c)) + (PVk
(c)− PVk

(g))

(A.55)

so for the derivatives at x0

(c− PVk
g)(β)(x0) = (c− PVk

(πx0))
(β)

(x0) + (PVk
(πx0)− PVk

(c))
(β)

(x0)

+ (PVk
(c)− PVk

(g))
(β)

(x0) .
(A.56)

By the polynomial reproduction property of the θ, PVk
πx0 = πx0 so, using the

definition of πx0 ,

∀β ≤ TαU, (c− PVk
(πx0))(β) (x0) = 0 (A.57)

and with the regularity of c

| (c− PVk
(πx0))

(TαU)
(x)− (c− PVk

(πx0))
(TαU)

(x0)| ≤ ‖c‖Cα |x− x0|α−TαU .
(A.58)
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The two remaining term of (A.56) are derivatives of a projection on Vk and give
similar bounds. Indeed, for any u:

(PVk
u)(β)(x0) =

∑

k

〈u, θk,n〉θ(β)
k,n (A.59)

and as the θk,n have a support of size K2k

(PVk
u)(β)(x0) =

∑

|n2k−x0|≤K2k

〈u, θk,n〉 θ(β)
k,n (A.60)

and

|(PVk
u)(β)(x0)| ≤ 2K max

|n2k−x0|≤K2k
|〈u, θk,n〉| ‖θ(β)

k,n‖∞ (A.61)

so as ‖θ(β)
k,n‖∞ ≤ C 2−kβ

|(PVk
u)(β)(x0)| ≤ C 2−kβ max

|n2k−x0|≤K2k
|〈u, θk,n〉| . (A.62)

For β = TαU, the Cα regularity of θ yields as long as |x− x0| ≤ K2k

|(PVk
u)(TαU)(x)− (PVk

u)(TαU)(x0)| ≤ C 2−kα max
|n2k−x0|≤2K2k

|〈u, θk,n〉||x− x0|α−TαU .

(A.63)

By definition of the Taylor polynomial, |πx0(x) − c(x)| ≤ ‖c‖Cα |x− x0|α so

max
|n2k−x0|≤2K2k

|〈πx0 − c, θk,n〉| ≤ C ‖c‖Cα 2kα . (A.64)

Inserting (A.64) in (A.62) with u = πx0 − c yields

|(PVk
πx0 − PVk

c)(β)(x0)| ≤ C ‖c‖Cα 2−kβ 2kα (A.65)

and ∀x, |x − x0| ≤ K2k

|(PVk
πx0 − PVk

c)(TαU)(x) − (PVk
πx0 − PVk

c)(TαU)(x0)| ≤ C ‖c‖Cα |x− x0|α−TαU .
(A.66)

By hypothesis ‖c−g‖∞ ≤ Cd s, so |〈c−g, θk,n〉| ≤ C Cd s and inserting this bound
in (A.62) with u = c− g

|(PVk
c− PVk

g)(β)(x0)| ≤ C Cd s 2−kβ (A.67)

and ∀x, |x − x0| ≤ K2k

|(PVk
c− PVk

g)(TαU)(x)− (PVk
c− PVk

g)(TαU)(x0)| ≤ C s 2−kα |x− x0|α−TαU .
(A.68)

As 2k = max(‖c‖−1/α
Cα , 1) s1/α, combining (A.57), (A.65) and (A.67) as well as

(A.58), (A.66) and (A.68) concludes the proof.
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A.4. Lemma 3.7 : Regularity of the warped function. Proof. [Lemma 3.7]
As h is α differentiable so is f = f̃ ? h. Furthermore

f(x1, x2 + g(x1)) =

∫

u

f̃(x1 − u1, x2 + g(x1)− u2)h(u1, u2)du (A.69)

now for each u1, an acceptable variable change replaces u2 by u2 + g(x1)− c(x1−u1)

f(x1, x2 + g(x1)) =

∫

u

f̃(x1 − u1, x2 + c(x1 − u1)− u2)h(u1, u2 + g(x1)− c(x1 − u1))du .

(A.70)

As f(x1 − u1, x2 + c(x1 − u1)− u2) is by hypothesis α times differentiable along
x1, the inner part of the integral is thus differentiable and

| ∂
a

∂xa1
(f̃(x1 − u1, x2 + c(x1 − u1)− u2)h(u1, u2 + g(x1)− c(x1 − u1)))|

= |
a∑

d=0

(
d

a

)
∂a−d

∂xa−d1

(f̃(x1 − u1, x2 + c(x1 − u1)− u2))
∂d

∂xd1
(h(u1, u2 + g(x1)− c(x1 − u1)))| .

(A.71)

As f̃(x1−u1, x2+c(x1−u1)−u2) is Cα with a constant bounded by ‖f̃‖Cα(Λ) max(‖c‖αCα , 1),
the first factor in each term of the sum can be controlled by

∣∣∣∣
∂a−d

∂xa−d1

(f̃(x1 − u1, x2 + c(x1 − u1)− u2))

∣∣∣∣ ≤ C ‖f̃‖Cα(Λ) max(‖c‖αCα , 1) (A.72)

and for any x′1

∣∣∣∣∣
∂TαU

∂x
TαU
1

(f̃(x′1 − u1, x2 + c(x′1 − u1)− u2)) − ∂TαU

∂x
TαU
1

(f̃(x1 − u1, x2 + c(x1 − u1)− u2))

∣∣∣∣∣

≤ C ‖f̃‖Cα(Λ) max(‖c‖αCα , 1)|x′1 − x1|α−TαU
(A.73)

The second factor is bounded with the help of the Faa di Bruno formula that
gives the derivatives of h(u1, u2 + g(x1)− c(x1 − u1)) seen as a composed function:

| ∂
d

∂xd1
(h(u1, u2 + g(x1)− c(x1 − u1)))|

=

∣∣∣∣∣
∑

k1+2k2+···+dkd=d

d!

k1! · · · kd!
∂k

∂xk1
(h(u1, u2 + g(x1)− c(x1 − u1))

×
(
g(1)(x1)− c(1)(x1 − u1)

1!

)k1

· · ·
(
g(d)(x1)− c(d)(x1 − u1)

d!

)kd ∣∣∣∣∣
(A.74)

with k = k1 + k2 + · · ·+ kd.
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The regularity of both c and g − c and the small support of h implies as |u1| ≤ s
∣∣g(d)(x1)− c(d)(x1 − u1)

∣∣

≤
∣∣∣g(d)(x1)− c(d)(x1)

∣∣∣+
∣∣∣c(d)(x1)− c(d)(x1 − u1)

∣∣∣
(A.75)

≤
{
C max(‖c‖Cα , Cd, 1) s1−d/α + ‖c‖Cα s if d < TαU
C max(‖c‖Cα , Cd, 1)s1−TαU/α + 2‖c‖Cαsα−TαU if d = TαU (A.76)

so

∣∣g(d)(x1)− c(d)(x1 − u1)
∣∣ ≤ C max(‖c‖Cα , Cd, 1) s1−d/α . (A.77)

Futhermore, one derives for any x′1, |x′1 − x1| ≤ Ks1/α

∣∣∣(g(TαU)(x′1)− c(TαU)(x′1 − u1)) −(g(TαU)(x1)− c(TαU)(x1 − u1))
∣∣∣

≤ C max(‖c‖Cα , Cd, 1) |x′1 − x1|α−TαU .
(A.78)

Now h itself is Cα with ‖h‖Cα ≤ s−(2+α), so

∣∣∣∣
∂k

∂xk1
h(u1, u2 + x1)

∣∣∣∣ ≤ s−2 s−k (A.79)

and

∣∣∣∣∣
∂TαU

∂x
TαU
1

h(u1, u2 + x′1)− ∂TαU

∂x
TαU
1

h(u1, u2 + x1)

∣∣∣∣∣ ≤ s
−2 s−α|x′1 − x1|α−TαU . (A.80)

Combining the bounds (A.77) and (A.79) as well as the bounds (A.78) and (A.80)
with (A.74) yields after some calculations

∣∣∣∣
∂d

∂xd1
h(u1, u2 + g(x1) + c(x2 − u2))

∣∣∣∣ ≤ C s−2 max(‖c‖αCα , Cαd , 1) s−d/α (A.81)

and for any x′1, |x′1 − x1| ≤ Ks1/α

∣∣∣∣
∂d

∂xd1
h(u1, u2 + g(x′1) + c(x2 − u2)) − ∂d

∂xd1
h(u1, u2 + g(x1) + c(x2 − u2))

∣∣∣∣

≤ C s−2 max(‖c‖αCα , Cαd , 1) s−1|x′1 − x1|α−TαU .

(A.82)

Inserting (A.72) and (A.81) in (A.71), we obtain

| ∂
a

∂xa1

(
f̃(x1 − u1, x2 + c(x1 − u1)− u2)h(u1, u2 + g(x1)− c(x1 − u1))

)
|

≤ C max(‖c‖αCα , Cαd , 1) s−2 s−a/α
(A.83)
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and with (A.73) and (A.82) for any x′1, |x′1 − x1| ≤ Ks1/α

| ∂
a

∂xa1

(
f̃(x′1 − u1, x2 + c(x′1 − u1)− u2)h(u1, u2 + g(x′1)− c(x1 − u1))

)

− ∂a

∂xa1

(
f̃(x1 − u1, x2 + c(x1 − u1)− u2)h(u1, u2 + g(x1)− c(x1 − u1))

)
|

≤ C max(‖c‖αCα , Cαd , 1) s−2 s−1 |x′1 − x1|α−TαU .

(A.84)

Now,

∂a

∂xa1
f(x1, x2 + g(x1)) =

∫

u

∂a

∂xa1

(
f̃(x1 − u1, x2 + c(x1 − u1)− u2)

h(u1, u2 + g(x1)− c(x1 − u1))
)

du

(A.85)

so the bounds (A.83) and (A.84) combined with the finite support of h of size s2

conclude the proof.

A.5. Lemma 3.9 : Smoothing effect. Proof. [Lemma 3.9] By construction,

‖h‖1f̃(x) − f(x) = ‖h‖1f̃(x)−
∫
f̃(x− u)h(u)du (A.86)

=

∫
(f̃(x)− f̃(x− u))h(u)du . (A.87)

so∣∣∣‖h‖1f̃(x) − f(x)
∣∣∣ ≤ max

u∈[−s,s]2
|f̃(x) − f̃(x− u)| ‖h‖1 ≤ max

u∈[−s,s]2
|f̃(x)− f̃(x− u)| .

(A.88)

Now, if x /∈ Cs, the regularity of f̃ yields

∀x /∈ Cs
∣∣∣‖h‖1f̃(x)− f(x)

∣∣∣ ≤ ‖f̃‖C1 s (A.89)

and otherwise

∀x ∈ Cs
∣∣∣‖h‖1f̃(x) − f(x)

∣∣∣ ≤ 2 ‖f̃‖∞ ≤ 2 ‖f̃‖C1 . (A.90)

Now, the area of CS and B can be controlled : #Cs ≤ C `1 s and #B ≤ C `1 `2.
So,
∥∥∥‖h‖1f̃(x)− f(x)

∥∥∥ |2 =

∫

x/∈Cs

∣∣∣‖h‖1f̃(x)− f(x)
∣∣∣
2

dx+

∫

x∈Cs

∣∣∣‖h‖1f̃(x)− f(x)
∣∣∣
2

dx .

(A.91)

Inserting (A.88), (A.89) ,(A.90) and the bounds on the areas yields

≤ C `1 `2 ‖f̃‖2C1
s2 + C `1 s ‖f̃‖2C1

(A.92)

so we conclude
∥∥∥‖h‖1f̃(x)− f(x)

∥∥∥
2

≤ C ‖f̃‖2C1
`1 s . (A.93)

Appendix B. Proofs of Lemmas for Theorem 4.3.
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B.1. Lemma 4.5: Geometry construction. Proof. [Lemma 4.5] We give the
main arguments of the proof without the details. We prove that the recursive splitting
occurs, after a finite number of steps, only near the junctions. This allows to control
the number of each kinds of squares as well as the number of parameters required to
describe them.

The non tangency condition implies that there is a minimum angle θ0 > 0 between
the tangents of the edges at the junctions. The regularity of the curves allows to define
a neighborhood of each junction in which the tangents do not vary by more than θ0/3.
The angle between the tangents of two different curves remains thus larger than θ0/3
and the geometry around the junction is close to the geometry of the junction of half-
lines as illustrated in the close-up of Figure 4.5. Outside this neighborhood, there is a
minimal distance d > 0 between the curves and so in a finite number, independent of
the geometric precision η = max(s, T 2α/(α+1)), of steps each dyadic square is either
a regular square or an edge square. The corresponding number of square is thus
uniformly bounded.

In the neighborhood of the junction, the recursive splitting continues until the
size of the squares is of order η but one can verify that, after a few steps, the number
of squares around each junction that can be labeled as temporary square is bounded
by a constant. As there is only a finite number of such junctions, this implies that
the number of the edge squares as well as the number of regular square is bounded
by C | log2 η| and that the number of junction square is bounded by C.

The segmentation is specified by the MS inner nodes of the corresponding dyadic
tree. There is a finite number, independent of η, of splits outside the neighborhood of
the junction and at most a constant number of splits at each scale near the junctions.
So, as η ≥ T 2α/(α+1),

MS ≤ C ′ + C ′ | log2 η| ≤ C | log2 T | . (B.1)

As seen in Lemma 3.6, it is enough to keep max(2λi min(‖c‖1/αCα , 1) η−1/α,K)
coefficients for each edge square Ωi of size 2λi , where K is the size of the support of
ψ. Summing these bounds over all edge squares yields to

MG ≤ C `C min(‖c‖1/αCα , 1) η−1/α + C | log2 T |K (B.2)

MG ≤ C `C min(‖c‖1/αCα , 1)T−2/(α+1) (B.3)

MG ≤ C Cf `CT−2/(α+1) (B.4)

where `C is the total length of the edge curves.

Combining (B.1) and (B.4) gives (4.23).

B.2. Lemma 4.6: Wavelets over Regular squares . Proof. [Lemma 4.6]
Let Ωi be a regular square of size 2λ. By definition, f is Cα in Ωi and this regularity
implies

|〈f,Ψd
j,m〉| ≤ C‖f‖Cα(Ωi)2

(α+1)j . (B.5)

Inserting (A.3) in (B.5) yields

|〈f,Ψd
j,m〉| ≤ C‖f̃‖Cα(Λ)2

(α+1)j . (B.6)
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We define now a cutting scale 2j0 as the largest scale such that C‖f̃‖Cα(Λ)2(α+1)j is
smaller than T so

1

2

(
T

C‖f̃‖Cα(Λ)

)1/(α+1)

≤ 2j0 ≤
(

T

C‖f̃‖Cα(Λ)

)1/(α+1)

. (B.7)

Let J ′ = {(j,m); 2j ≥ 2j0}, Lemma 3.10 implies

L̃i(f, T,Bi) ≤
∑

(j,m)/∈J′
|〈f,Ψd

j,m〉|2 + T 2Card (J ′) . (B.8)

The number of wavelets at the scale 2j is max(22λ2−2j ,K2), with K the size of
the support of ψ, so with the definition of J

Card (J ′) ≤ C max(22λ2−2j0 ,K2) . (B.9)

Combining the bound on the number of wavelets and the inequality (B.6), one obtain
that, for any scale 2j , the energy at this scale satisfies

∑

m

|〈f,Ψd
j,m〉|2 ≤ C‖f̃‖2Cα(Λ)2

2λ22αj (B.10)

and since (j,m) ∈ J for 2j ≥ 2j0

∑

(j,m)/∈J
|〈f,Ψd

j,m〉|2 ≤ C‖f̃‖2Cα(Λ)2
2λ22αj0 . (B.11)

Combining (B.9) and (B.11) with (B.8) and inserting the definition of 2j0 of (B.7)
eventually yields

L̃i(f, T,Bi) ≤ C max(22λ‖f‖2/(α+1)
Cα(Λ) T 2α/(α+1),K2T 2) . (B.12)

As proved in Lemma 4.5, there are at most C| logT | such squares in the chosen
partition and their total area,

∑
i∈ 22λi , is bounded by the area of [0, 1]2. Summing

the inequality (B.12) over all regular squares thus gives

∑

i∈R
L̃i(f, T,Bi) ≤ C max(‖f‖2/(α+1)

Cα(Λ) T 2α/(α+1),K2 | log2 T |T 2) . (B.13)

and thus as log |T |K2T 2 ≤ ‖f‖2/(α+1)
Cα(Λ) T 2α/(α+1) for T small enough it proves (B.8).

B.3. Lemma 4.7: Wavelets over Junction squares. Proof. [Lemma 4.7]
Lemma 4.5 proves that the number of such square is bounded by a constant C of
the same order than the number of curves, that is bounded by definition. It is thus
sufficient to prove a bound similar to (4.25) for each junction square Ωi.

By definition, the size of Ωi is smaller than η = max(s, T 2α/(α+1)). If η =
T 2α/(α+1), the result holds immediately as ‖f‖2Ωi ≤ ‖f‖∞η2 ≤ ‖f‖∞T 2α/(α+1) and

‖f ||∞ ≤ ‖f̃‖∞‖h‖1 ≤ ‖f̃‖∞. Otherwise η = s ≥ T 2α/(α+1) and we use the regularity
of h to obtain the bound.

Indeed, combining (A.34) and (B.5) yields to

|〈f,Ψd
j,m〉| ≤ C‖f̃‖∞ s−α 2(α+1)j . (B.14)
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We define now the cutting scale 2j0 as the largest scale such that C‖f̃‖∞s−α2(α+1)j ≤
T so

1

2

(
Tsα

C‖f̃‖∞

)1/(α+1)

≤ 2j0 ≤
(

Tsα

C‖f̃‖∞

)1/(α+1)

. (B.15)

For J ′ = {(j,m); 2j ≥ 2j0}, Lemma 3.10 implies

L̃i(f, T,Bi) ≤
∑

(j,m)/∈J′
|〈f,Ψd

j,m〉|2 + T 2Card (J ′) . (B.16)

The number of wavelets at the scale 2j is bounded by max(s22−2j ,K2) as the size of
the square is smaller than s and thus, with the definition of J ′

Card (J ′) ≤ C max(s22−2j0 ,K2) . (B.17)

Using (B.14), we derive that at any scale 2j

∑

m

|〈f,Ψd
j,m〉|2 ≤ C max(s2‖f̃‖2∞s−2α22αj , ‖f̃‖2∞s−2α22(α+1)j) (B.18)

so

∑

(j,m)/∈J
|〈f,Ψd

j,m〉|2 ≤ C max(s2‖f̃‖2∞22αj0 , ‖f̃‖2∞s−α22(α+1)j0) . (B.19)

Inserting this bounds in (B.16) and using the definition of 2j0 in (B.15) yields

L̃i(f, T,Bi) ≤ Cs2/(α+1)‖f̃‖2/(α+1)
∞ T 2α/(α+1) (B.20)

so

L̃i(f, T,Bi) ≤ C‖f̃‖2/(α+1)
∞ T 2α/(α+1) . (B.21)

B.4. Lemma 4.8: Bandelets. Proof. [Lemma 4.8] Theorem 3.2 and more
specifically Proposition 3.8 applies to any band Bi associated to a region Ωi with g̃ =
QT 2(PVk

(g)), `1 = 2λi , 2k = η1/α and Cd = C max(‖c‖Cα , ‖θ‖∞p) so ‖QT 2(PVk
(g))−

g‖ ≤ Cdη. Combining (3.35) and (3.36) implies thus that

L̃i(f, T,Bi) ≤ C max(2λi C
2/(α+1)
f T 2α/(α+1), T 2| log2 T |) . (B.22)

Summing (B.22) over the horizontal edge squares yields
∑

i∈IH
L̃i(f, T,Bi) ≤

∑

i∈IH
C max(C

2/(α+1)
f 2λi T 2α/(α+1), T 2| log2 T |) (B.23)

∑

i∈IH
L̃i(f, T,Bi) ≤

∑

i∈IH
C C

2/(α+1)
f T 2α/(α+1)2λi +

∑

i∈IV
CT 2| log2 T | . (B.24)

Lemma 4.5 proves that there are at most C| logT | edge squares and that the sum of
their size is bounded by a constant C `C, so

∑

i∈IH
L̃i(f, T,Bi) ≤ C C2/(α+1)

f `C T
2α/(α+1) (B.25)
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which proves (4.26) and concludes Lemma 4.8.

Appendix C. Complexity of the CART Algorithm.
We denote by C(2λ) the numerical complexity to find this best geometric flow

over a square Ωi of size 2λ. Since there are 2−2λ square regions of size 2λ in [0, 1]2,
the total numerical complexity to find the best bandelet bases in all dyadic squares is∑0

λ=log2 T
2 2−2λ C(2λ).

Since the minimum size of squares Ωi is T 2, the segmentation quad-tree has a
depth at most equal to | log2 T

2|. The number of comparisons of the bottom-up
optimization algorithm is proportional to the number of nodes of a full quad-tree of
depth | log2 T

2|, which is O(T−4). The total number of operations to find the best
bandelet frame is therefore

0∑

λ=log2 T
2

2−2λ C(2λ) +O(T−4) . (C.1)

Let us now compute the computational complexity C(2λ) to find the geometric
flow and the corresponding bandelet frame F i which yields a minimum Lagrangian
value L(f , T,F i) over a square Ωi of size 2λ. For this purpose all possible geometric
flows are explored. If there is no flow then F i is a discrete wavelet basis of Ωi.
The wavelet coefficients and the corresponding Lagrangian value are computed with
O(#Ωi ε

−2) = O(22λ ε−2) operations. If there is a horizontally parallel flow then Ωi

is subdecomposed into 2λ−k rectangles Ωi,m of length 2k and height 2λ, where 2k

is an adjustable scale variable. There are O((2k T−2)p) different polynomial flows
over each Ωi,m. Computing the corresponding coefficients of f for each polynomial
flow and its Lagrangian cost with the algorithm of Section 4.1 requires O(2λ+k ε−2)
operations. Among the O((2k T−2)p) polynomial flows finding the one that minimizes
the Lagrangian can thus be done with O(2λ+(p+1)k ε−2 T−2p) operations. Hence, the
total number of operations to find the best horizontally parallel flow is

λ∑

k=log2 T
2

2λ−kO(2λ+(p+1)k ε−2 T−2p) = O(2(p+2)λ ε−2T−2p) . (C.2)

The same argument applies to vertically parallel flows. Combining all possibilities
(no flow, horizontally or vertically parallel flows), it results that the total number
of operations to find the best bandelet frame over a square of size 2λ is C(2λ) =
O(2(p+2)λ ε−2T−2p). Inserting this in (C.1) shows that the numerical complexity to
find the best bandelet frame over [0, 1]2 is

0∑

λ=log2 T
2

2−2λ C(2λ) +O(T−4) = O(ε−2 T−2p) . (C.3)

Appendix D. Proof of the lemmas for Theorem 6.1.

D.1. Lemma 6.2: Existence of a bandelet frame with polynomial geom-
etry. Proof. [Lemma 6.2] To show the existence of a frame satisfying the conditions
of the lemma, we use the same strategy as in the proof of Lemma 4.4 and focus on
the case T 2α/(α+1) ≤ s with α > 1.

The dyadic squares of this frame are exactly the ones of Lemma 4.5. A wavelet
basis is still used in the regular squares and the junction squares. The only difference
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is in the edge square which are further subdivided first in an isotropic way and then
along the direction of the edge in order to use a bandelet basis with a polynomial
geometry.

As the Lagrangian remains the same for the previous regular and junction squares,
we will thus study only the modification of the edge squares.

The first subdivision is handled with Lemma 4.6 and yields at most T−2/(α+1)

regular squares for which the Lagrangian is bounded by KT 2. The contribution of
these new regular squares is thus at most of order KT 2α/(α+1) and thus contribution
of all the regular squares is still of the right order.

The remaining dyadic edge squares are further subdivided along the edge direction

while their size in this direction is larger than 2k0 = max(‖c‖−1/α
Cα , 1) s1/α.

On a rectangle of width 2k ≤ 2k0 starting at 2km, the geometry g is specified by
a polynomial of degree p ≥ α. It is chosen as the discretized projection of the Taylor
polynomial π2km(c) of the parameterization c of the curve at the point 2km so

π2km(c)(x) =
∑

β≤α

c(β)(2km)

β!
(x− 2km)β (D.1)

and

g(x) =

p∑

n=1

QT 2

( 〈π2km(c), θn(2−kt−m)〉
‖θn‖12k

)
θn(2−kt−m) . (D.2)

This requires p coefficients per rectangle. As 2k ≤ max(‖c‖−1/α
Cα , 1) s1/α, one can

verify then that this implies

|(c− g)(β)(x)| ≤ C max(‖c‖Cα , Cd) s
1−β/α ∀β ≤ TαU (D.3)

and

|(c− g)(TαU)(x)− (c− g)(TαU)(x0)| ≤ C max(‖c‖Cα , Cd) |x− x0|α−TαU (D.4)

with Cd = ‖θ‖Cαp that do not depend on f and could be incorporated in the first
constant so these are the same bounds as the ones obtained in Lemma 3.6. The
proofs of Lemmas 3.4 and 3.5 can be repeated almost identically, with a special care
in Lemma 3.4 to the bandelets coming from the anisotropy of the supporting rectangle,
to obtain for each rectangle

L̃(f, T,Bi,r) ≤ C max(C
2/(α+1)
f 2k T 2α/(α+1), T 2K | log2 T |) . (D.5)

There are at most C `C min(‖c‖1/αCα , 1) s−1/α rectangles of size max(‖c‖−1/α
Cα , 1) s1/α

and at most C | log2 T | dyadic squares of smaller size so
∑

i,r

L̃(f, T,Bi,r) ≤ CC2/(α+1)
f `C T

2α/(α+1) + C `C min(‖c‖1/αCα , 1) s−1/α T 2K | log2 T |

+ C | log2 T |T 2K | log2 T | .

(D.6)

and for T small enough

∑

i,r

L̃(f, T,Bi,r) ≤ C C2/(α+1)
f `Cmax(T 2α/(α+1), s−1/α T 2 | log2 T |) . (D.7)
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For each rectangle, there is a constant number p of parameters so we can obtain
∑

i,r

L(f, T,Bi,r) ≤ C C2/(α+1)
f `C max(T 2α/(α+1), s−1/α T 2 | log2 T |) . (D.8)

As s ≥ T 2α/(α+1) this implies
∑

i,r

L(f, T,Bi,r) ≤ C C2/(α+1)
f `C T

2α/(α+1) | log2 T | (D.9)

and concludes the proof when T 2α/(α+1) ≤ s. Ons should note that as long as
T 2α/(α+1)| log2 T |α ≤ s the logarithmic factor disappears.

The result for T 2α/(α+1) ≥ s is then obtained as in the proof of Theorem 3.2 with
Lemma 3.9.

D.2. Lemma 6.3: Discretization. Proof. [Lemma 6.3] As the integral flow
g is defined in a continuous way, a continuous bandelet basis {bl,j,m1,m2} can be
constructed over any band B. Over the warped band WB, with WB = Ω if there is
no warping, we define

Wf̃WB(x1, x2) =
∑

Wf [n1, n2]φj0,n1(x1)φj0,n2(x2) (D.10)

or

Wf̃WB(x1, x2) =
∑

f [n1, n2 + dg(n1ε)ε
−1e]φj0,n1(x1)φj0,n2(x2) , (D.11)

with 2j0 = ε, so

〈f, bl,j,m1,m2〉 = 〈Wf,ψj1,m1
[n1]ψj2,m2

[n2]〉 (D.12)

〈f, bl,j,m1,m2〉 = 〈Wf̃WΩ(x1, x2), ψj,m1(x1)ψl,m2(x2)〉 (D.13)

Now, over the rectangle WB,
∑

l≥j>j0
|〈f, bl,j,m〉 − 〈f, bl,j,m〉|2 =

∑

l≥j>j0

∣∣∣〈Wf̃WΩ(x1, x2), ψj,m1(x1)ψl,n2(x2)〉

− 〈Wf(x1, x2), ψj,m1(x1)ψl,n2(x2)〉
∣∣∣
2

(D.14)

using the orthogonality of the wavelet basis

=
∑∣∣∣〈Wf̃WΩ(x1, x2), φj0,n1(x1)φj0,n2(x2)〉

− 〈Wf, φj0,n1(x1)φj0 ,n2(x2)〉
∣∣∣
2 (D.15)

and as 〈Wf̃WΩ(x1, x2), φj0 ,m1(x1)φj0 ,n2(x2)〉 = 〈Wf(x1, x2),W−1(ε−11m1ε,(m2+dg(m1ε)ε−1e)ε)〉

=
∑∣∣∣〈Wf(x1, x2),W−1(ε−11m1,m2+dg(m1ε)ε−1e)(x1, x2)〉

− 〈Wf(x1, x2), φj0 ,m1(x1)φj0,m2(x2)〉
∣∣∣
2

(D.16)
∑

l≥j>j0
|〈f, bl,j,m〉 − 〈f, bl,j,m〉|2 =

∑
|〈Wf, Φ̃j0,m1,m2〉 − 〈Wf,Φj0,m1,m2〉|2 ,

(D.17)
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with Φ̃j0,m1,m2(x1, x2) = W−1(ε−11m1ε,(m2+dg(m1ε)ε−1e)ε)(x1, x2) and Φj0,m1,m2(x1, x2) =
φj0,m1(x1)φj0,m2(x2).

Now we will temporary admit that for any family of scaling function Φj0,m of scale
2j0 and integral 2j0 of support included in the ball of radius K 2j0 centered on the
the point m2j0 included in Ω and such that the total length of curve in Ω is bounded
by `, for any set {xj0,m : |xj,m − 2j0m| ≤ K2j0},

∑

m

|〈f,Φj0 ,m〉 − 2j0f(xj0,m)|2 ≤ C(l + |Ω|2j0) . (D.18)

This can be applied simultaneously to {Φ̃j0,m} and {Φj0,m} to obtain

(∑

m

|〈Wf, φj0 ,m〉 − |〈Wf, φ̃j0 ,m〉|2
)1/2

≤ 2
(
C2j0(l + |Ω|2j0)

)1/2
. (D.19)

Summing over all rectangles gives (6.23) and concludes.
We prove now (D.18). As the scaling function Φj0 is of integral 2j0 ,

〈f,Φj0,m〉 − 2j0f(xj0,m) =

∫
(f(x) − f(xj0,m))Φj0,m(x)dx (D.20)

and

|〈f,Φj0,m〉 − 2j0f(xj0,m)| ≤ K2 2j0 max
|x−xj0,m|≤K2j0

|f(x)− f(xj0 ,m)| . (D.21)

We bound now max|x−xj0,m|≤K2j0 |f(x) − f(xj0,m)| with respect to the position
of xj0,m:

• if xj0 ,m is such that one remain at a distance greater than s from the discon-
tinuities, the regularity of f is used to obtain

max
|x−xj0,m|≤K2j0

|f(x)− f(xj0,m)| ≤ ‖f̃‖C1(Λ)K 2j0 . (D.22)

• otherwise, the regularity of h implies ‖f‖C1(Λ) ≤ ‖f̃‖∞s−1, so

max
|x−xj0,m|≤C2j0

|f(x)− f(xj0,m)| ≤ ‖f̃‖C1(Λ) s
−1K 2j0 . (D.23)

• finally, if s is smaller than 2j0 , one still have

max
|x−xj0,m|≤C2j0

|f(x)− f(xj0 ,m)| ≤ 2‖f‖∞ ≤ C‖f̃‖C1(Λ) . (D.24)

Whatever 2j0 , there are at most max(#Ω 2−2j0 ,K2) coefficients where the bound (D.22)
applies. If 2j0 ≥ s, the smoothing does not affect the coefficients and the bound (D.24)
yields to

∑

m

|〈f,Φj0,m〉 − 2j0f(xj0,m)|2 ≤ C #Ω 2−2j0 ‖f̃‖2C1(Λ)(2
2j0)2 + C`2−j0‖f̃‖2C1(Λ)(2

j0)2

(D.25)
∑

m

|〈f,Φj0,m〉 − 2j0f(xj0,m)|2 ≤ C ‖f̃‖2C1(Λ) 2j0(`+ #Ω2j0) . (D.26)
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Otherwise 2j0 ≤ s, the discontinuities are already smoothed at the scale 2j0 , the
number of affected coefficients is max(C ` s 2−2j0 ,K) and the bound (D.23) gives

∑

m

|〈f,Φj0,m〉 − 2j0f(xj0,m)|2 ≤ C #Ω 2−2j0 ‖f‖2C1(Λ) (22j0)2

+ C ` s 2−2j0 ‖f̃‖2C1(Λ) (s−122j0)2

(D.27)

and as s−1 ≤ 2−j0

∑

m

|〈f,Φj0,m〉 − 2j0f(xj0,m)|2 ≤ C ‖f̃‖2C1(Λ) 2j0(`+ #Ω 2j0) . (D.28)
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