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ABSTRACT

This paper introduces a new class of bases, called bandelet bases, which decompose the image along multiscale
vectors that are elongated in the direction of a geometric flow. This geometric flow indicates the direction in
which the image grey levels have regular variations. The image decomposition in a bandelet basis is implemented
with a fast subband filtering algorithm. Bandelet bases lead to optimal approximation rates for geometrically
regular images. For image compression, the bandelet basis geometry is optimized with a fast best basis algorithm.
Comparisons are made for image compression with wavelet bases.

1. INTRODUCTION

Developing efficient signal processing algorithms for signal compression, noise removal or inverse problems, often
requires to build sparse representations where the signal is precisely approximated with few parameters. Such
representations take advantage of some form of regularity, which indicate that some values can be predicted from
their neighbors. Representations in orthonormal bases have been shown to be particularly efficient for images
and in particular block cosine bases and wavelet bases have lead to the two image compression standard JPEG
and JPEG-2000. They are constructed with separable products of one dimensional bases and are composed of
vectors having a square support. Such bases do not take into account an important source of redundancy in
images, which is their geometric regularity. Sharp image transitions such as edges are expensive to represent
although one could reduce their cost by taking into account the fact that they often have a piecewise regular
evolution across the image support. Integrating the geometric regularity in the image representation is therefore
a key challenge to improve state of the art applications to image compression, denoising or inverse problems.
Very different approaches have been studied, including edge detection techniques1–3 or the construction of bases
such as curvelets4 or contourlets.5 By reviewing previous approaches, Section 3 explains the difficulties to create
stable and efficient geometric representations.

This paper constructs a new representation, that decomposes the image over a basis of bandelets, which
are elongated multiscale vectors that are adapted to the image geometry. A major difficulty is to optimize
the calculated geometry. In computer vision, it is well known that the geometry provides crucial information to
analyze the information content of images, but hundreds of papers have already been published on edge detection,
with no final consensus on how to do it. We argue that edges are ill-defined and often not appropriate to describe
the image geometry. Moreover, for complex images, an optimal geometry can only be defined in the context of a
precise application such as image compression or noise removal, where the performance of the geometry can be
measured.

To construct bandelet bases, the image geometry is defined as a field of locally parallel vectors which indicates
directions in which the image gray level have regular variations. We call geometric flow this vector field. One can
associate a bandelet basis to any geometric flow. The geometric flow is not calculated a priori from the image,
but a posteriori by optimizing the bandelet basis for a particular application. Finding the optimal geometry is
therefore casted as a best basis search among a predefined dictionary of bases, in order to optimize a particular
application. This paper studies applications to image compression.

Bandelet bases are obtained with a bandeletization of warped wavelet bases, which takes advantage of the
image regularity along the geometrical flow. Section 4 explains how to construct such bases together with their
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geometric flow, and Section 5 shows how to discretize this basis and studies applications to image compression.
It explains how to compute an optimal geometry with a fast algorithm, that requires O(N2(log2N)2) operations
for an image of N2 pixels. Numerical results show that optimized bandelet bases improve the image compression
results that are obtained by wavelet bases.

2. NON-LINEAR APPROXIMATION OF IMAGES WITH WAVELETS

Sparse signal approximations can be obtained by decomposing signals in an orthonormal basis. Let us first
consider the case of continuous spatial parameter images f(x1, x2) before concentrating on discrete images. In
an orthonormal basis B = {gm}m∈N, an image f can be approximated by the partial sum

fM =
∑

m∈IM

〈f, gm〉 gm ,

where IM is an index set of M elements. To minimize the error

‖f − fM‖2 =
∑

m 6∈IM

|〈f, gm〉|2 (1)

the set IM should correspond to the M largest inner products. This is equivalent to threshold with a threshold
TM that is adjusted to keep M coefficients:

IM = {m ∈ N : |〈f, gm〉| > TM} .

For discrete images of N2 pixels, the same approximations can be implemented in an orthonormal basis B
of RN2

. For compression applications, the inner products are not thresholded but quantized and coded. Yet, it
has been shown in Falzon and Mallat6 that for a uniform quantization of step TM , at high compression rates
the quadratic distortion D is proportional to ‖f − fM‖2 and the total bit budget R is proportional to M . The
distortion rate D(R) thus has an asymptotic decay that is the same as the approximation error ‖f − fM‖2 as
a function of M . The efficiency of thresholding estimators that remove additive white noises by representing
the signal in the basis B also depends upon this approximation error.7 For both applications, given some prior
information on the properties of f , we thus want to find a basis B where ‖f − fM‖2 converges quickly to zero
when M increases. This is the case if there exists a small constant C and a large exponent α with

‖f − fM‖2 ≤ CM−α . (2)

Wavelet bases have been shown to be particularly efficient to approximate images. A separable wavelet basis
is constructed from a one-dimensional wavelet ψ(t) and a scaling function φ(t) which are dilated and translated

ψj,m(t) =
1√
2j
ψ
( t− 2jm

2j

)

and

φj,m(t) =
1√
2j
φ
( t− 2jm

2j

)
.

The resulting family of separable wavelets
{
φj,m1

(x1)ψj,m2
(x2) , ψj,m1

(x1)φj,m2
(x2) , ψj,m1

(x1)ψj,m2
(x2)

}

j∈Z,(m1,m2)∈Z2

(3)

is an orthonormal basis of L2(R2). To construct a basis over a subset Ω of R2, one must keep the wavelets whose
support are inside Ω and modify appropriately the ones whose support intersect the boundary of Ω.8 We shall



still write φj,m and ψj,m the modified scaling functions and wavelets at the boundary, and the resulting basis of
L
2(Ω) can be written

{
φj,m1

(x1)ψj,m2
(x2) , ψj,m1

(x1)φj,m2
(x2) , ψj,m1

(x1)ψj,m2
(x2)

}

(j,m1,m2)∈IΩ
(4)

where IΩ is an index set that depends upon the geometry of the boundary of Ω.

If the image f(x1, x2) is uniformly regular, which is measured by the fact that it is Cα (α times continuously
differentiable) and if the wavelet ψ has p > α vanishing moments then one can prove9 that there exists a constant
C such that the approximation fM from M wavelets satisfies

‖f − fM‖2 ≤ CM−α . (5)

This decay rate is optimal is the sense that one can not find a basis for all Cα functions f satisfy ‖f − fM‖2 =
O(M−β) with β > α.9 However, wavelet bases are not the only bases to achieve the optimal rate (5).

If f is C
α (α > 1) everywhere but along curves of finite length where is is discontinuous, then the discon-

tinuities create many fine scale wavelet coefficients of large amplitude and the error decay (5) is no more valid.
However, one can still prove that there exists a constant C such that

‖f − fM‖2 ≤ CM−1 . (6)

This result extends to all images having a bounded total variation, which means that their level sets have a
finite average length. Moreover, wavelet bases are optimal for bounded variation functions in the sense that
there exists no basis that leads to an approximation error (2) with a decay exponent α > 1 over all bounded
variation functions.10 Keeping fine scale wavelet coefficients near singularities can be interpreted as building an
adaptive grid approximation where the image is locally approximated at a scale adapted to the image structure.
For discrete images decomposed in a discrete wavelet basis, this adaptation leads a more sparse representation
than with a block cosine basis, which explains why wavelets are more efficient more image compression.

Despite the optimality of wavelets for bounded variation functions, one can often improve the approximation
performance of wavelet bases for images, by observing that the level sets of many images not only have a finite
average but are regular geometric curves. Exploiting this geometric regularity can allow us to improve the
representation. This is well illustrated by a simple example. Let Ω a subset of [0, 1]2 whose boundary ∂Ω is a
piecewise C

2 curve, with a finite number of corners, as illustrated in Figure 1(a). Suppose that f(x1, x2) is a
C

2 function inside and outside Ω, which is discontinuous along ∂Ω. One can verify that there exists C1 and C2

such that the wavelet approximation fM satisfies

C1M
−1 ≤ ‖f − fM‖2 ≤ C2M

−1 .

This can be improved with representations adapted to the image geometry. A simple example is obtained with
a piece-wise linear approximation constructed over an adapted triangulation illustrated in Figure 1(b). The
boundary ∂Ω is covered with narrow triangles whose widths are O(M−2), and the inside and outside of Ω are
covered by large triangles so that the total number of triangles is M . Over such a triangulation, one can construct
a piecewise linear approximation fM of f that satisfies

‖f − fM‖2 ≤ CM−2 . (7)

In this case the decay rate exponent α = 2 is better than with wavelets and this approximation decay is identical
to the one obtained when f is C

2 over its whole support. The existence of discontinuities does not degrade the
asymptotic decay of the approximation.

This example shows that exploiting the geometrical image regularity can lead to much smaller approximation
errors for a fixed number of approximation elements M . One must also include the fact that these approximation
elements (triangles) are defined by multiple parameters (orientations, width, length), which can be incorporated
in the constant C in (7) and which does not affect the asymptotic decay rate. The major difficult is of course that
images are much more complex, and adaptive triangulations are extremely hard to construct for such complex



Ω

(a) (b)
Figure 1. (a) Indicator function of a domain Ω, in black. (b) Adapted triangulation that covers the boundary with narrow
triangles.

functions. Moreover, one would like to extend this result for regularity indexes α ≥ 2. If the boundary ∂Ω is a C
α

curve and if f is bounded and C
α inside and outside Ω then one would like to find a geometrical approximation

fM from M elements such that
‖f − fM‖2 ≤ CM−α . (8)

We shall see that bandelet bases are able to achieve this optimal decay rate.

3. GEOMETRIC IMAGE REPRESENTATIONS

The construction of geometric image representation is a very active research area where many beautiful, and
innovative ideas have been tested. Summarizing the different approaches will help understand the major diffi-
culties.

In the computer vision community, Carlsson1 proposed in 1988 an edge based image representation which
measures the image jumps across curves in the images, called edges. An image approximation is then calculated
by imposing the same jumps along the edge and by computing values between edges with a diffusion process.
Many edge based image representations have then been elaborated along similar ideas,11, 12 with different edge
detection procedures and image approximations using jump models along these edges. To refine these models,
multiscale edge representations using wavelet maxima2 or an edge adapted multiresolution3 have also been
studied. Edge based image representations with non-complete orthonormal families of foveal wavelets or finger
prints have also been introduced and studied to reconstruct the main image edge structures. To stabilize the edge
detection, global optimization procedures have also been elaborated by Donoho,13 Shukla et al.14 and Wakin
et al.15 The optimal configuration of edges is then calculated with an image segmentation over dyadic squares
using fast dynamic programming algorithms over quad-trees.

A major difficulty that face all edge based approaches is that sharp image transitions often do not correspond
to discontinuous jumps along edge curves. On one hand, the optical diffraction produces an averaging effect which
blurs the grey level discontinuities along occlusion boundaries, and on the other hand many sharp transitions
are produced by texture variations that are not aggregated along geometrical curves. Edge based algorithms are
thus often not more efficient than a standard wavelet image representation over a wide range of approximation
precision.

All the approaches previously described are adaptive in the sense that the image representation is adapted
to a geometry estimated from the image. Surprisingly, a remarkable result of Candes and Donoho4 shows that
one can construct a non adaptive representation that takes advantage of the image geometrical regularity by
decomposing it in a fixed basis or frames of curvelets. Curvelet families are composed of multiscale elongated
and rotated functions that defines bases or frames of L2(R2). They proved that that an approximation fM with
M curvelets of an image f having discontinuities (blurred or not) along C

2 curves produces an error that satisfy

‖f − fM‖2 ≤ CM−2 (log2M)3 . (9)

By comparing this to (8) we see that this approximation result is nearly asymptotically optimal up the (log2M)3

factor. Do and Vetterli5 used similar ideas to construct contourlets that can be computed with a perfect



reconstruction filter bank procedure. However, the beautiful simplicity due to the non-adaptivity of curvelets has
a cost: curvelet approximations loose their excellent properties when the image is composed of edges which are
not C2. For example, if the discontinuities are along piecewise regular curves which has corners or junctions, then
the approximation decay (9) is not valid anymore. If edges are along irregular curves of finite length (bounded
variation functions) then curvelets approximations are not as precise as wavelet approximations. Finally, if the
edges are along curves whose regularity is C

α with α > 2 then the approximation decay rate exponent remains
2 and does not reach the optimal value α.

In image processing applications, we generally do not know in advance the geometrical image regularity. It
is therefore necessary to find approximation schemes that can adapt themselves to varying degrees of regularity.
Our goal is thus to construct an adaptive image approximation fM of f , with M parameters, which satisfies an
optimal decay rate ‖f −fM‖ ≤ CM−α. The exponent α is a priori unknown and specifies the geometrical image
regularity.

4. BANDELETS ALONG GEOMETRIC FLOWS

Instead of describing the image geometry through edges, which are most often ill-defined, the geometry of images
is characterized by a field of vectors which locally give a direction where the image has regular variations. This
vector field is called a geometric flow. Section 4.1 constructs bandelet bases over appropriate geometric flows.
Section 4.2 explains relates the optimization of the geometric flow to the precision of image approximations with
few parameters.

4.1 Block Bandelet Basis

This section describes the construction of bandelet bases from a wavelet basis that is warped along the geometric
flow, to take advantage of the image regularity along this flow. Conditions are imposed on the geometric flow to
obtain orthonormal bandelet bases.

In a region Ω, a geometric flow is a vector field ~τ (x1, x2) defined at each (x1, x2) ∈ Ω, which indicates locally
a direction in which the image intensity f has regular variations. If the image intensity is uniformly regular
in the neighborhood of a point then this direction is not uniquely defined. Some form of global regularity is
therefore imposed on the flow to specify it uniquely. To construct orthogonal bases with the resulting flow, a
first regularity condition imposes that the flow is either parallel vertically, which means that ~τ (x1, x2) = ~τ (x1),
or parallel horizontally and hence ~τ (x1, x2) = ~τ (x2). To maintain enough flexibility, this parallel condition is
imposed within subregions Ωi of the image support. The image support S is partitioned into regions S = ∪iΩi,
and within each Ωi the flow is either parallel horizontally or vertically. If the image intensity f is uniformly
regular over a whole region Ωi then a geometric flow is meaningless and is therefore not defined.

Figure 2. Example of an adapted dyadic squares segmentation of an image and and its corresponding flow.



Figure 2 gives an example where the image is partitioned into square regions that are small enough so that
each region Ωi includes at most one contour. In each region including a contour piece, the flow is parallel to the
tangents of the contour curve. Bandelets are constructed in these regions by warping separable wavelet bases
so that they follow the lines of flow, and by applying a bandeletization procedure that takes advantage of the
image regularity along the geometric flow. The next section explains how to optimize this image segmentation
and compute the flow over each region.

If there is no geometric flow over a region Ω, which indicates that the image restriction to Ω has an isotropic
regularity then this restriction is approximated in the separable wavelet basis (4) of L2(Ω). If a geometric flow is
calculated in Ω, this wavelet basis is replaced by a bandelet basis. We first explain how to construct the bandelet
basis when the flow is parallel in the vertical direction: ~τ (x1, x2) = ~τ(x1). We normalize the flow vectors so that
it can be written ~τ (x1) = (1 , c′(x1)). Let xmin = infx1

{(x1, x2) ∈ Ω}. A flow flow line is defined as an integral
curve of the flow, whose tangents are parallel to ~τ(x1). Since the flow is parallel vertically, a flow line is a set of
point (x1, x2) ∈ Ω which satisfy x2 = c(x1) + c0 where

c(x1) =

∫ x1

xmin

c′(x1) dx1 ,

and c0 is a translation parameter. By construction of the flow, the image grey level has regular variations along
these flow lines. To take advantage of this regularity with wavelets, the separable wavelets in (4) are warped
with an operator W performing translations along x2. The warped image

Wf(x1, x2) = f(x1, x2 + c(x1))

is regular along the horizontal lines for x2 fixed and x1 varying. Over the warped region

Ω′ =WΩ = {(x1, x2) : (x1, x2 + c(x1)) ∈ Ω}

we define a separable orthonormal wavelet basis of L2(Ω′):
{
φj,m1

(x1)ψj,m2
(x2) , ψj,m1

(x1)φj,m2
(x2)) , ψj,m1

(x1)ψj,m2
(x2))

}

(j,m1,m2)∈I
Ω′

. (10)

Since the warping operator W is an orthogonal operator, applying its inverse to each of these wavelets yields an
orthonormal basis of L2(Ω), that is called a warped wavelet basis:
{
φj,m1

(x1)ψj,m2
(x2 − c(x1)) , ψj,m1

(x1)φj,m2
(x2 − c(x1)) , ψj,m1

(x1)ψj,m2
(x2 − c(x1))

}

(j,m1,m2)∈I
Ω′

. (11)

Warped wavelets are separable along the x1 variable and along the x′2 = x2 − c(x1) variable which follows the
geometric flow lines within Ω.

The flow is calculated so that f is regular along the flow lines in Ω. Suppose that f(x1, x2 + c(x1)) is C
α

function of x1 for all x2 fixed, within Ω. Since ψ(t) has p > α vanishing moments, one can verify16 that

|〈f(x1, x2) , φj,m1
(x1)ψj,m2

(x2 − c(x1))〉| = O(2j(α+1))

and
|〈f(x1, x2) , ψj,m1

(x1)ψj,m2
(x2 − c(x1))〉| = O(2j(α+1)) .

However, the third type of wavelet coefficients have a slower decay when the scale 2j decreases:

|〈f(x1, x2) , ψj,m1
(x1)φj,m2

(x2 − c(x1))〉| = O(2j) , (12)

because φ has no vanishing moment and thus can not take advantage of the regularity of f along the flow lines.

To improve this result, it is necessary to replace the family of orthogonal scaling functions {φj,m2
(x′2)}m2

with
x′2 = x2−c(x1), by an equivalent family of orthogonal functions, that have vanishing moments and can thus take
advantage of the regularity of f along the flow lines. We know that {φj,m2

(x′2)}m2
is an orthonormal basis of a



multiresolution space which also admits an orthonormal basis of wavelets {ψl,m2
(x′2)}l>j,m2

. This suggests re-
placing the orthogonal family {ψj,m1

(x1)φj,m2
(x′2)}j,m1,m2

by the family {ψj,m1
(x1)ψl,m2

(x′2)}j,l>j,m1,m2
which

generates the same space. This is called a bandeletization, which can be implemented with a simple discrete
wavelet transform.17 The functions ψj,m1

(x1)ψl,m2
(x′2) are called bandelets because their support is parallel to

the flow lines and is more elongated (2l > 2j) in the direction of the geometric flow. Figure 3 gives examples of
such bandelets. Inserting these bandelets in the warped wavelet basis (11) yields a bandelet orthonormal basis
of L2(Ω):
{
φj,m1

(x1)ψj,m2
(x2 − c(x1)) , ψj,m1

(x1)ψj,m2
(x2 − c(x1)) , ψj,m1

(x1)ψl,m2
(x2 − c(x1))

}

j,l>j,m1,m2

. (13)

(a) (b) (c)
Figure 3. The dark spots display the amplitude of bandelets in a region Ω having a vertically parallel flow. (a): Bandelets
φj,m1

(x1)ψj,m2
(x2 − c(x1)). (b): Bandelets ψj,m1

(x1)ψj,m2
(x2 − c(x1)). (c): Bandelets ψj,m1

(x1)ψl,m2
(x2 − c(x1)).

If f(x1, x2 + c(x1)) is a C
α function of x1 for all x2 fixed in Ω then one can prove16 that the bandelet

coefficients are much smaller than the warped wavelet coefficients (13) at fine scales:

|〈f(x1, x2) , ψj,m1
(x1)ψl,m2

(x2 − c(x1)〉| = O(min(2j , 2l(α+1))) .

This decay is sufficient to obtain approximation error from the largest bandelet coefficients which has the optimal
decay rate (8).

If the geometrical flow in Ω is parallel in the horizontal direction, meaning that

~τ (x1, x2) = ~τ (x2) = (c′(x2) , 1)

then the same construction applies by inverting the roles of the variables x1 and x2. Let xmin = infx2
{(x1, x2) ∈

Ω} and

c(x2) =

∫ x2

xmin

c′(x2) dx2 .

A warped wavelet basis is constructed from a separable wavelet basis of Ω′ = {(x1, x2) : (x1 + c(x2), x2) ∈ Ω},
and is defined by:
{
φj,m1

(x1 − c(x2))ψj,m2
(x2) , ψj,m1

(x1 − c(x2))φj,m2
(x2) , ψj,m1

(x1 − c(x2))ψj,m2
(x2)

}

(j,m1,m2)∈I
Ω′

(14)

The bandeletization replaces each family of scaling functions {φj,m1
(x1 − c(x2))}m1

by a family of orthonormal
wavelets that generates the same space. The resulting bandelet orthonormal basis of L2(Ω) is:
{
ψl,m1

(x1 − c(x2))ψj,m2
(x2) , ψj,m1

(x1 − c(x2))φj,m2
(x2) , ψj,m1

(x1 − c(x2))ψj,m2
(x2)

}

j,l>j,m1,m2

. (15)

Given a partition of the image support S = ∪iΩi with the corresponding geometric flow, this strategy defines
a bandelet or wavelet (if there is no flow) orthonormal basis in each L

2(Ωi). The union of these bases is a
block orthonormal basis of L2(S). The orthogonality of the wavelets and bandelets can be relaxed. If the one-
dimensional wavelet ψ and the scaling function φ yield a biorthogonal orthogonal wavelet basis18 then the same
construction defines a biorthogonal bandelet basis of each L

2(Ωi).16



4.2 Optimized Geometry for Approximations

A major difficulty is to compute an appropriate image geometry. For image approximation, the best geometry
is the one that leads to the best approximation. This means finding an approximation fM from M parameters
that minimizes the approximation error ‖f − fM‖. For bandelet approximations, the M parameters include the
bandelet coefficients that are used to compute fM as well as the parameters that specify the image partition and
the geometric flow in each region.

To represent the image partition with few parameters, and be able to compute an optimal partition with
a fast algorithm, we restrict ourselves to partitions in squares of varying dyadic sizes. A dyadic squares image
segmentation is obtained by successive subdivisions of square regions into four squares of twice smaller width.
For a square image support of width L, a square region of width L 2−j is represented by a node at the depth j
of a quad-tree. A square subdivided into four smaller squares corresponds to a node having four children in the
quad-tree. Figure 4 gives an example of a dyadic square image segmentation with the corresponding quad-tree.

20

29

21 22

23

4

6

28

30

125 126

124 127

4 6

20 21 22 23 28 29 30

124 125 126 127

Figure 4. Example of dyadic square image segmentation. Each leave of the corresponding quad-tree corresponds to a
square region having the same index number.

In each region Ω of the segmentation, one must decide if there should be a geometric flow, if this flow should
be parallel in the horizontal or in the vertical direction, and what should be this flow. If there is a flow, it
should be optimized to guarantee that the image has regular variations along the flow lines. This optimization
is performed by minimizing the partial derivatives of a filtered image along the flow. Given a regularizing filter
θ(x1, x2) that will be specified later, we minimize a flow energy:

E(~τ ) =
∫

Ω

∣∣∣
∂(f ⋆ θ)(x1, x2)

∂~τ(x1, x2)

∣∣∣
2

dx1 dx2 . (16)

If the geometrical flow is chosen to be parallel in the vertical direction then ~τ (x1, x2) = (1 , c′(x1)) and the
resulting flow energy (16) can be written:

E(~τ ) =
∫

Ω

∣∣∣f ⋆
∂θ

∂x1
(x1, x2) + c′(x1) f ⋆

∂θ

∂x2
(x1, x2)

∣∣∣
2

dx1 dx2 . (17)

To compute a flow that depends essentially upon the the sharpest image variations, we choose a separable filter
θ(x1, x2) = θ0(x1) θ1(x2), where θ0(x1) is a high-pass filter and θ1(x2) is a low-pass filter. The choice of these
filters depends upon the application, and in denoising applications they must must be optimized as part of the
global optimization of the geometry.

A flow parallel in the horizontal direction can be written ~τ (x1, x2) = (c′(x2), 1) and the resulting flow energy
is

E(~τ ) =
∫

Ω

∣∣∣c′(x2) f ⋆
∂θ

∂x2
(x1, x2) + f ⋆

∂θ

∂x1
(x1, x2)

∣∣∣
2

dx1 dx2 , (18)

with θ(x1, x2) = θ1(x1) θ0(x2).

In approximation or compression applications, the flow must be represented by a a limited number of pa-
rameters, and c′(t) is calculated as an expansion over translated box splines functions b(x) dilated by a scale
factor 2l:

c′(t) =
∑

n

αn b(2
−lt− n) .



A box spline b(t) of degree m is obtained by convolving the indicator function 1[−1/2,1/2] with itself m+1 times.
The parameters αn are computed by minimizing the quadratic forms (17) or (18) depending upon the orientation
of the flow, which is done by solving the corresponding linear systems. The scale parameter 2l which defines the
regularity of the flow is another parameter that must also be optimized.

The mathematical study16 explains how to compute a segmentation and optimize the scale 2l of the geometric
flow to minimize the approximation error ‖f − fM‖2 for a fixed number M of parameters, including the bandelet
coefficients and all coefficients needed to specify the geometric flow. This is performed with a fast dynamic
programming algorithm that is explained in Section 5.2 in the context of image compression. If the image f
has contours that are C

α curves which meet at corners but are not tangential, and if f is C
α away from these

curves then with an appropriate modification of the boundary wavelets, one can then prove16 that the resulting
optimal approximation satisfies the optimal asymptotic decay rate:

‖f − fM‖2 ≤ CM−α ,

with no prior knowledge on the value of α. In this paper, we concentrate on discrete fast algorithms and
applications to image compression.

5. FAST DISCRETE BANDELET TRANSFORM AND IMAGE COMPRESSION

5.1 Fast Discrete Bandelets Transform

Bandelets in a region Ω are computed by applying a bandeletization to warped wavelets in Ω, which are separable
wavelets along a fixed direction (horizontal or vertical) and along the flow lines. A fast discrete bandelet transform
can therefore be computed by using a fast separable wavelet transform along this fixed direction and along the
image flow lines. The block bandelet basis of Section 4.1 is constructed with separate warped wavelet bases
inside each region. In image processing applications, this creates border effects when modifying the corresponding
bandelet coefficients. To avoid these border effects, we use a discrete warped wavelet transform which goes across
the region boundaries while keeping perfect reconstruction properties.

The fast discrete bandelet transform associated to an image partition ∪iΩi includes three steps:
• An image resampling, that computes the image sample values along the flow lines in each region Ωi of the

partition.
• A warped wavelet transform with a subband filtering along the flow lines, which goes across the region

boundaries. The subband filtering procedure uses the lifting scheme on irregular grids introduced by
Bernard.19

• A bandeletization that transforms the warped wavelet coefficient to compute bandelet coefficients along
the flow lines.

The fast inverse bandelet transform includes the three inverse steps:
• An inverse bandeletization that recovers the warped wavelet coefficient along the flow lines.

• An inverse warped wavelet transform with an inverse subband filtering.

• An inverse resampling which computes the image samples along the original grid from the samples along
the flow lines in each region Ωi.

The fast algorithms that implement the three steps of this discrete bandelet transform and their inverse
require a total of O(N2) operations for an image of N2 pixels. A detailed description can be found in the
reference.17

5.2 Application to Image Compression

A major difficulty of geometrical representations is to compute an appropriate geometry from the image. For
a bandelet transform, the geometry is defined by the image partition in regions Ωi and by the geometric flow
within each region. The notion of optimal geometry can be well defined in the context of a precise application,
and we shall concentrate here on image compression. The optimization of the geometry for noise removal is
studied in.17



The goal is to compute a geometry that optimizes the distortion-rate of an image compression transform code
in the corresponding bandelet basis. The best geometry is defined as the one that yields the most compressed
image code. This optimization requires to establish the link between the image geometry and the distortion-rate
of the image coder. The geometry is optimized by a fast algorithm that minimizes the distortion-rate with
O(N2(log2N)2) operations for an image of N2 pixels, because the geometry is structured by aggregating nearly
independent building blocks. To concentrate on the properties of the bandelet transform itself, we use a relatively
simple transform coder with a scalar quantization and an entropy coding of all coefficients. A comparison is
made with the same coder applied to a wavelet transform.

Let D = {Bγ}γ∈Γ be the dictionary of all possible biorthogonal bandelet bases that we write Bγ = {gγm}1≤m≤N2 .
The index γ is associated to the geometry of the basis, which specifies the image partition in dyadic squares
[1, N ]2 = ∪iΩi and the geometric flow in each square Ωi. We denote by B̃γ = {g̃γm}1≤m≤N2 the biorthogonal
bandelet basis. For any γ ∈ Γ

f =
N2∑

m=1

〈f, gγm〉 g̃γm .

Finding the best geometry for image compression can be interpreted as a search for a best bandelet basis in a
specified dictionary.

The transform code is implemented with a uniform scalar quantizer Q(x) with bins of size ∆, using a zero-bin
twice larger than the others:

Q(x) =

{
0 if |x| ≤ ∆

(⌊x/∆⌋+ 1/2)×∆ otherwise
.

The restored image from quantized coefficients is:

f̃ =
N2∑

m=1

Q(〈f, gγm〉) g̃γm .

The resulting distortion is calculated with a Euclidean squared norm D = ‖f − f̃‖2. The total number of bits R
to code f̃ is equal to the number of bits Rc to code the N2 quantized coefficients {Q(〈f, gγm〉)}1≤m≤N2 plus the
number of bits to code the geometry. The distortion D depends upon R through the value of ∆ and through the
choice of the geometry.

The geometric flow in a region Ωi is a vector field ~τi[n1, n2] defined over the image sampling grid. If the flow
is parallel vertically then it can be written

~τi[n1, n2] = ~τi[n1] = (1 , c′i[n1]) ,

where c′i[n1] is the relative displacement of the image grey levels in Ωi along the line n1 with respect to the line
n1 − 1. If there is a flow, it should be optimized to guarantee that the image has regular variations along the
flow lines. This optimization is performed by minimizing the partial derivatives of a filtered image along the
flow. Given a regularizing filter θ(x1, x2), we minimize

E(~τ ) =
∑

(n1,n2)∈Ωi

∣∣∣f ⋆
∂θ

∂x1
[n1, n2] + c′i[n1] f ⋆

∂θ

∂x2
[n1, n2]

∣∣∣
2

. (19)

We construct θ from the one-dimensional wavelet and scaling function θ(x1, x2) = ψ(22x1)φ(x2). If the geometric
flow is parallel horizontally in Ωi then the flow can be written ~τi[n1, n2] = (c′i[n2] , 1) and this flow vector is
calculated by minimizing the quadratic image variations along the flow:

E(~τ ) =
∑

(n1,n2)∈Ωi

∣∣∣f ⋆
∂θ

∂x2
[n1, n2] + c′i[n2] f ⋆

∂θ

∂x1
[n1, n2]

∣∣∣
2

, (20)

with θ(x1, x2) = φ(x1)ψ(2
2x2).



Since the geometric flow is assumed to be regular, the displacement c′i[p] is specified by its decomposition
coefficients αn over a family of translated box splines, which are dilated by a scale factor 2l:

c′i[p] =
∑

n

αn b(2
−lp− n) . (21)

In a square region Ωi of width 2k, there are 2k−l box spline coefficients αn. The coefficients αn that minimize (19)
or (20) are computed by solving the linear systems associated to this quadratic minimization. These coefficients
αn are uniformly quantized. The quantization step adjusts the precision of the geometrical displacement c′i[p].
It is set to be of the order of 1/8 of a pixel. The quantized coefficients are coded with a fixed length code.

To optimize the coder, we use the Lagrangian approach proposed by Ramchandran and Vetterli,20 which
finds the best basis that minimizes D(R) + λR, where λ is a Lagrange multiplier. If D(R) is convex, which is
usually the case, by letting λ vary we are guaranteed to minimize D(R). If D(R) is not convex, then this strategy
leads to a D(R) that is at most a factor 2 larger than the minimum.

For a given image and parameter λ, we want to find the image segmentation and the geometric flow which
defines a bandelet basis that minimizes D(R) + λR. This optimization is implemented by a fast dynamic
programming algorithm which uses the fact that

D + λR ≈
∑

i

(
Di + λRi

)
, (22)

where Di = ‖f− f̃‖2Ωi
is the Euclidean norm restricted to a region Ωi of the image partition, and Ri is the number

of bits needed to code the bandelet coefficients and the geometry in Ωi. Since the {Ωi}i define a partition of
the image support [1, N ]2, we clearly have D =

∑
iDi. The paper17 describes a coder of the quantized bandelet

coefficients and of the geometric information so that R ≈ ∑
iRi, from which we derive (22). In order to minimize

D+λR, we must adjust the size of the quantization bin ∆. One can verify17 that the optimum is obtained when

∆ =
√
2λγ0 .

To find the bandelet basis that minimizes D+λR, we begin by computing the geometric flow which minimizes
Di+λRi in all possible dyadic regions Ωi. This means finding if the geometric flow should exist or not, if it should
be parallel horizontally or vertically, and what is the best scale parameter 2l. All these possibilities are tested
in each Ωi and we retain the one that minimizes Di + λRi. One can verify17 that it requires O((log2N)2N2)
operations.

At this point we know the optimal geometry within each possible dyadic region Ωi of the image, and the
corresponding minimum value Di + λRi. Observe that for any image region Ωi, a partition into subregions
Ωi = ∪lΩl gives a better distortion rate if

Di + λRi ≥
∑

l

Dl + λRl .

The optimal image partition into dyadic regions that minimizes the overall distortion rate D + λR can thus be
computed with a bottom up algorithm along the branches of the segmentation quad-tree as in.13–15

The final image code is obtained by decomposing the image in the bandelet basis associated to the optimized
partition and its geometric flow. To evaluate the performance of this bandelet compression algorithm, we
compare the distortion rate curve D(R) with the distortion rate obtained in a 7/9 biorthogonal wavelet basis,18

with the same quantization and entropy coding procedure. We do not incorporate the bit-plane strategy and the
contextual coding procedure of JPEG-2000 to compare more easily the performance of the bandelet and wavelet
bases themselves. Similar bit plane and contextual coding procedure can also be applied to bandelet coefficients.

Figure 5 shows these distortion rate curves for Lena and Barbara. The bandelet coder outperforms the
wavelet coder by about .4 dB for Lena and 1.1 dB for Barbara. It is important to observe that this remains valid
for a bit rate R/N2 going from .15 bit per pixel to 1 bit per pixel, which covers the whole range of practical
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Figure 5. Distortion-rate the bandelet coder (full lines) and the wavelet coder (dashed lines) for the Lena and Barbara
images. The distortion D is given by the PSNR in dB and the rate per pixel R/N2 in bit per pixel. Over most bit rates,
the bandelet coder reduces the distortion by approximatively .4 dB for Lena and by 1.1 dB for Barbara.

applications. From a visual quality point of view, the difference of performance between the two coders is more
impressive as it can be seen from the images shown in Figure 6. Eventhough the bandelet coder introduces errors,
the restored images have a regular geometry along the direction of the computed flow, and the resulting error is
hardly visible. On the contrary, wavelets introduce visible ringing effects that are distributed the square grids
of the wavelet sampling, which partly destroys the geometrical regularity. As a result, the bandelet compressed
images have a better visual quality than their wavelet counterparts.

The main inefficiency of the current bandelet scheme comes from boundary effects between regions having
different geometric flow. We use a bandelet transform that includes vectors that go across regions and thus
produces no compression artefacts at the boundary of such regions. However, as it can be seen in Figure 2,
the direction of the flow is typically discontinuous across the boundaries of the dyadic square regions. As a
consequence of these orientation discontinuities, the transform does not capture fully the image regularity at
these locations. Removing this geometric discontinuity with a multiscale flow is currently under investigation.

6. CONCLUSION

A central idea in the construction of bandelets is to define the geometry as a vector field, as opposed to a set of
edge curves. This vector field plays the same role as motion vectors in video image sequences. It indicates the
direction of displacement of grey level values, not in time but in space. Like in video image coding, this geometry
is simplified by an image segmentation in squares, whose sizes are adapted to the local image structures.

The geometry of bandelet bases is not calculated a priori but by optimizing the resulting application, whether
it is image compression or noise removal,17 with a fast best basis search algorithm. As a result, bandelet bases
improve the image compression and noise removal results obtained with wavelet bases. For video image sequences,
a three-dimensional time-space geometric flow should be defined to construct bandelet bases that are adapted to
the space-time geometry of the sequence. This is a possible approach to improve the current video compression
standard.
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