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1 Orthonormal Basis and Approximation The-

ory

1.1 Decomposition in a basis

Decomposition in a basis: (bj)j∈J basis of L2([0, 1]).
∀f ∈ L2([0, 1],

f =
∑

j∈J

〈f, bj〉bj

with 〈f, bj〉 =
∫ 1

0 f(t)bj(t)dt. The Parseval-Bessel norm energy conservation
equality yields

‖f‖2 =
∑

j∈J

|〈f, bj〉|2

1.2 Linear and non linear approximation

For any I ∈ P(J ), one defines f|I by

f|I =
∑

j∈I

〈f, bj〉bj .

The question is now how to select “a good subset” of a given size M .
A first possibility is to select the N first coefficients. This assume that there

is a natural order on the basis elements and thus J ≡ N . The resulting function
fLM is thus

fLM =
N−1∑

j=0

〈f, bj〉bj

where the L in the notation is here to stress that it is a linear approximation.
A second possibility is to try to minimize the error between f and f|I . Indeed

by the Parseval-Bessel equality, we know that

‖f − f|I‖2 =
∑

j 6∈I

|〈f, bj〉|2 = ‖f‖2 −
∑

j∈I

|〈f, bj〉|2 .
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To minimize this error, it appears thus clearly that one should put in the best
subset I0 the M largest coefficients. If we denote by T (M) the absolute value
of the Mth largest coefficients (and we suppose that all the coefficients are
differents) then the best subset I0 is defined by

I0 = {j, |〈f, bj〉| ≥ T (M)} .

Conversely for any T , that is called a threshold, the set

I0 = {j, |〈f, bj〉| ≥ T } .

is the solution that minimize ‖f − f|I‖2 for a certain constraint |I| ≤ M(T )
where |I| denotes the cardinal of I. Indeed I0 is the minimizer in I of the
corresponding Lagrangian form

L(I, T ) = ‖f − f|I‖2 + T 2|I| .

From now on, we will denote fNLM the best non linear approximation with
M terms whose absolutes values are larger than T (M):

fNLM =
∑

|〈f,bj〉|≥T (M)

〈f, bj〉bj

and by fT the approximation of f by the M(T ) coefficients larger that T :

fT =
∑

|〈f,bj〉|≥T

〈f, bj〉bj .

1.3 Approximation error decay

A natural question that arises is how fast does the approximation error decays
when one increases M or decrease T . This is the subject of the approxima-
tion theory and one can relates these decays to the decay of the coefficients
themselves.

1.3.1 The linear case

For the linear approximation, the following Theorem holds

Theorem 1.

∃C > 0, ∀M, ‖f−fLM‖2 ≤ CM−β ⇔ ∃C > 0, ǫλ > 1, ∀M,
λM∑

M+1

|〈f, bj〉|2 ≤ CM−β .

Proof. The direct implication is obvious as

‖f − fLM‖2 =
+∞∑

M+1

|〈f, bj〉|2 ≥
λM∑

M+1

|〈f, bj〉|2
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for any λ. To obtain the reverse implication, it is sufficient to verify that

‖f − fLM‖2 =
+∞∑

M+1

|〈f, bj〉|2 ≤
+∞∑

k=0

λk+1M∑

λkM+1

|〈f, bj〉|2

‖f − fLM‖2 ≤
+∞∑

k=0

C(λkM)−β ≤ C
+∞∑

k=0

C(λk)−βM−β ≤ C

1− λ−βM
−β

A sufficient condition is given by the classical Sobolev like condition

∑

j∈N

jβ|〈f, bj〉|2 ≤ C .

Indeed,

∑

j∈N

jβ |〈f, bj〉|2 ≥
+∞∑

j=M+1

jβ |〈f, bj〉|2 ≥Mβ
+∞∑

j=M+1

|〈f, bj〉|2 .

1.3.2 The non linear case

For the non linear case, the analysis is much more precise. Reusing the notations
T (M) for the absolute value of the Mth largest coefficients and M(T ) for the
number of coefficients larger than T , the following Theorem holds

Theorem 2. For any β > 0, for any f ∈ L2 the following properties are
equivalents:

1. ∃C, ∀M, ‖f − fNLM ‖2 ≤ CM−β

2. ∃C, ∀T > 0, infM ‖f − fNLM ‖2 + T 2M ≤ C(T 2)β/(β+1)

3. ∃C, ∀T > 0, ‖f − fT ‖2 + T 2M(T ) ≤ C(T 2)β/(β+1)

4. ∃C, ∀T > 0, ‖f − fT ‖2 ≤ C(T 2)β/(β+1)

5. ∃C, ∀T > 0, M(T ) ≤ C(T 2)−1/(β+1)

6. ∃C, ∀M, T (M) ≤ CM (β+1)/2

Proof. 1 =⇒ 2:

inf
M
‖f − fNLM ‖2 + T 2M ≤ inf

M
CM−β + T 2M

≤ inf
x
Cx−β + T 2(x+ 1)
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differentating this function yields the equation −βCx−β−1 + T 2 = 0 and thus

≤ C
(
T 2

βC

)β/(β+1)

+ T 2

(
T 2

βC

)−1/(β+1)

+ T 2

x ≤ C′
(
T 2
)β/(β+1)

2⇔ 3: The infimum of 2 is exactely the quantity appearing in 3.
3 =⇒ 4, 3 =⇒ 5 and (4 and 5) =⇒ 3 are straightforward.
(4 and 5) =⇒ 1 is based on

M(T ) ≤ C(T 2)−1/(β+1) =⇒ (T 2)β/(β+1) ≤ C(M(T ))−β .

5 =⇒ 6:

∀T > 0, M(T ) ≤ C(T 2)−1/(β+1) =⇒ ∀T > 0, M(T )β+1 ≤ Cβ+1(T 2)−1

=⇒ ∀T > 0, M(T )β+1 ≤ Cβ+1(T 2) ≤ Cβ+1M(T )−(β+1)

which yields the results asM(T ) takes all the possible values (if we assume that
all the coefficients are differents...)

6 =⇒ 1:

‖f − fNLM ‖2 =

+∞∑

k=M+1

T (k)2 (1)

≤
+∞∑

k=M+1

Ck−(β+1) (2)

≤ CCβM−β (3)

With a similar proof than in the linear case, a sufficient condition is given
by the reordered Sobolev like condition

∑∞
M=1M

β|T (M)|2 ≤ C.

2 Basis

For a given function f or a given class of function Θ, the behavior of the coeffi-
cients depends obviously of the choice of the basis. We have seen so far that the
coefficients should decay rapidly in order to obtain a good approximation rate.
In this section, we will look at to families of basis: the ones based on Fourier
and the ones based on wavelets.

For each family, we will review the basis, the associated transform and fast
transform. We will also see the associated function class with respect to the
approximation properties.
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2.1 Fourier Basis

2.1.1 Basis

Fourier: most classical basis on [0, 1]
FFT algorithm

2.1.2 Issues

Issues with periodization and non localization.
DCT basis that avoids the discontinuity in the periodization

2.1.3 Approximation

Linear approximation class: Sobolev spaces.
Non linear approximation spaces: not well known!
Issues with a step functions.

2.2 Heiseinberg and block based basis

2.2.1 Heisenberg Incertitude Theorem

2.2.2 Block by block basis

2.3 Wavelet Basis

2.3.1 Haar Basis

Explicit Haar basis.
Computation of coefficients Cα and step. Corresponding approximation

rate.

2.3.2 Multiresolution and orthogonal wavelet basis

Construction with Fourier theory
Daubechies, Symmlet, Coifflet

2.3.3 Fast Wavelet Transform and Initialization

FWT
First scale initialization.

2.4 Linear and non linear approximation

Besov spaces and Weak Besov spaces.
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3 Compression and Approximation Theory

In this section, one will study some very simple compression algorithm to stress
the relationship between transform coding compression and non linear approx-
imation.

3.1 Transform coding

To describe a signal f of finite length N , instead of giving its N values, we will
use a transformed description: its coefficients in an orthogonal basis (bj).

We thus describe

f =
N∑

i=1

〈f, bj〉bj

by the set of coefficients (〈f, bj〉). To code the function f , all we have to code
is thus this sequence of coefficients. If we assume that each coefficients requires
Nb bits then the total number of coefficients required to code the function f is
N × Nb bits. This number is roughly the same than the one required to give
the N values of f .

This yields to a perfect reconstruction of f : a lossless coding. In this setting,
the number of bits required can be lowered by using an entropy coding algorithm.
These algorithms are based on the information theory and are able to exploit
the redundancies in the list of coefficients. These are the algorithm that are
used for the ZIP compression for example.

Although this will give, most of the time, a smaller number of bits, this
technique is not sufficient to obtain a compression factor greater than 5. To
obtain larger compression factor, one has to abandon something: the perfect
reconstruction properties.

Indeed, if one is ready to code an approximated version f̃ of the original
signal f , one can further reduce the number of bits required.

3.2 Quantization

The key idea in the transform coding scheme is to code an approximate value
of the coefficient instead of the coefficient. This can be done by a simple scalar
quantization operator: each coefficient cn is replaced by a quantized coefficients
Q(cn) where the quantizer maps the real axis into a countable of even finite set
of values: it maps a this countable set of bins to a value withing this set.

The simplest quantizer family, the uniform quantizer family, is parameterized
by a step size ∆. The quantizer Q∆ is then the function

x 7→ Qδ(x) =

⌊
x+ .5∆

∆

⌋
∆ .

For any x ∈ R, |x−∆(x)|2 ≤ ∆2

4 . If one only suppose thatX is a random variable
whose density f satisfy the high resolution hypothesis, f(x) ≃ f(k∆), ∀x ∈
[(k − .5)∆, (k + .5)∆], one can prove that the uniform quantizer is an optimal
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strategy to minimize the number of bins for a given error and one obtains

E(|X −Q∆(X)|2) ≃ ∆2

12 .
Applying this scheme to our function f yields

f̃∆ =

N∑

i=1

Q∆(〈f, bj〉)bj

and thus

‖f − f̃∆‖2 =

N∑

i=1

|〈f, bj〉 −Q∆(〈f, bj〉)|2 .

As often the zero bin is very different from this other ones (one hopes that most
of the coefficients are small), this error is often rewritten as

‖f − f̃∆‖2 =
∑

Q∆(〈f,bj〉)=0

|〈f, bj〉 −Q∆(〈f, bj〉)|2 +
∑

Q∆(〈f,bj〉) 6=0

|〈f, bj〉 −Q∆(〈f, bj〉)|2

‖f − f̃∆‖2 =
∑

|〈f,bj〉|≤∆/2

|〈f, bj〉|2 +
∑

|〈f,bj〉|>∆/2

|〈f, bj〉 −Q∆(〈f, bj〉)|2

now introducing f∆/2 the approximation of f made by keeping the coefficients
whose absolute values are larger than ∆/2

‖f − f̃∆‖2 = ‖f − f∆/2|2 +
∑

|〈f,bj〉|>∆/2

|〈f, bj〉 −Q∆(〈f, bj〉)|2

Using the simple bound on the quantized error yields

‖f − f̃∆‖2 ≤ ‖f − f∆/2|2 +

(
∆

2

)2

M∆/2

which can be proved to be quite tight as under the high resolution hypothesis
outside the zero bin

‖f − f̃∆‖2 ≃ ‖f − f∆/2|2 +
1

3

(
∆

2

)2

M∆/2

The error ‖f − f̃∆‖2 is called the distorsion and is denoted D. Its upper

bound ‖f − f∆/2|2 +
(

∆
2

)2
M∆/2 is the quantity that has been studied for ap-

proximation and one know thus that its decay is linked to the decay of the
coefficients within the basis.

One should know study how to code the set of coefficients.
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3.3 Compression without Information Theory

We should first propose a very naïve strategy that would be a first benchmark.
Assume that all the coefficients are bounded by cmax, the number of bins of size
∆ is roughly 2cmax

∆ and thus we need log2
2cmax

∆ bits to specify each coefficient.
The resulting rate to code all the coefficients is thus

R = N(log2

2cmax

∆
) = N log2(2cmax)− N

2
log2 ∆2 .

and thus
∆2 = 4c2max2

−2R/N

If we look at the average rate R̄ this equality becomes

∆2 = 4c2max2
−2R̄

If we assume that f is such that it satisfies ‖f − fM‖2 ≤ CM−β one can obtain:

D(R) ≤ C(∆2)β/(β+1) ≤ C′2−2 β

β+1
R̄ = C(∆2)β/(β+1) ≤ C′2−2 β

β+1
R/N .

One can do much better, once we assume that the proportion of coefficients
quantized to zero is large (close to 1). Instead of storing the value of all the coef-
ficients, we will store the number M∆/2 of significant coefficients, their position
and their value. The total number of bits required by this strategy is thus

R = log2N +M∆/2(log2N + log2(2cmax)− 1

2
log2 ∆2)

As soon as we assume that f is such that it satisfies ‖f − fM‖2 ≤ CM−β one
can obtain M∆/2 ≤ (‖f − f∆/2|2)−1/β and ∆2 ≥ (‖f − f∆/2|2)(beta+1)/β and
thus

R ≤ log2N +D(R)−1/β

(
log2N + log2(2cmax)− β + 1

2β
log2D(R)

)

which yields to
D(R) ≤ CR−β| log2R|β+1 .

3.4 Compression with IT

Shannon...
Peformance closely linked to approximation.

4 Estimation and Approximation Theory

In this section, we focus on the estimation of a finite dimensional signal f from
a “noisy” observation Y = f + ǫW where W is a standard gaussian white noise
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and ǫ is a known noise level parameter. This model is the projection on finite
dimensional space of the classical gaussian white noise model

dY = f(t)dt+ ǫdWt

and thus we will talk about the regularity of f as the regularity of the underlying
continuous function even in the finite dimensional case.

4.1 Oracle estimator and minimax bound

The gaussian white noise model Y = f + ǫW can be translated in a sequence
model by the decomposition of Y in an orthogonal basis:

〈Y, bi〉 = 〈f, bi〉+ ǫ〈W, bi〉 .

Using the properties of a white noise, one can verify that the sequence (〈W, bi〉)
is standard gaussian iid.

Oracle estimator / Minimax lower bound for orthosymmetric bodies?

4.2 Thresholding estimator and model selection

Thresholding estimator.
Let D be a dictionnary of orthogonal basis B, we call modelsMγ∈Γ the set

of all subspaces spanned by generators (ei)i∈I belonging to a single basis B of
D.

To build a good estimate F of f from Y , we need then to build a good
dictionnary D and find a feasable way to select a good modelM.

A good dictionnary D may obey several constraints

• D must be rich enough to ensure that any Cα geometrically regular func-
tion f may be well approximated in at least one basis B of D.

• The number of generators of all basis of D must be finite and not too high
to allow a feasible algorithm to define the estimatate F and to prevent
overfitting problems.

The last point is crucial. The choice of the basis B depends on data Y and then
on PLdW . This dependency to realization of noise and the large number of
models could lead to overfitting problems. To overcome this difficulty Barron,
Birgé and Massart[1] propose to select the modelMF that minimizes a penalized
criterion

M̂ = argmin
Mγ ,γ∈Γ

‖PLY − PMγ
Y ‖2 + pen(γ)

with a suitable choice for pen(γ). pen(γ) penalizes the complexity of the model
to minimize the dimension of the model and then the energy of PMγ

(dW ).
Indeed one can prove
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Theorem 1. Let {Mγ}γ∈Γ be a collection of subspaces generated by generators
taken in a finite set C of cardinal κ, let L a finite dimensional subspace such

that Mγ ⊂ L, ∀γ ∈ Γ, let λ ≥
√

32 + 8
log κ . For any f ∈ L2 and any noise level

ε the estimate F defined from dYt = f(t)dt+ εdWt as the projection F = P
M̂
Y

of the noise on the best model

M̂ = argmin
Mγ ,γ∈Γ

‖PLY − PMγ
Y ‖2 + λ2(log κ)ε2Mγ .

satisfies

E(‖f − F‖2) ≤ 4

(
min
Mγ ,γ∈Γ

‖f − PMγ
f‖2 + λ2(log κ)ε2Mγ

)
+

32

κ
ε2

where MF is the dimension of the subspace on which F lives for a constant C
that depends only on λ.

We propose here a simple proof, inspired by a sketch of Barron, Birgé, Mas-
sart, based only on a concentration lemma for the norm of the projection of
the noise over all subspaces deduced from an inequality for gaussian process
obtained by Tsirelson, Ibragimov and Sudakov[42]. A better lower bound on λ
can be obtained[34] but at the price of some technicalities.

Concentration inequalities are at the core of all the selection model estima-
tors. Essentially, the penalty should dominate the random fluctuation of the
minimized quantity. The key lemma, Lemma 1, uses a concentration inequality
for gaussian variable to ensure, with high probability, that the noise energy is
small simultaneously in all the subspacesMγ .

Lemma 1. For all u ≥ 0, with a probability greater than 1− 2/κe−u,

∀γ ∈ Γ, ‖PMγ
W‖ ≤

√
Mγ +

√
4 logκMγ + 2u

where W = PLdWt is the orthogonal projection of dWt on the space L.

Proof of Lemma 1. The key ingredient of this proof is a concentration inequal-
ity. Tsirelson’s Lemma proves that for any 1-lipschitz function φ : R

n → R

(|φ(x) − φ(y)| ≤ ‖x− y‖) if X is a gaussian white noise with variance σ in R
n

then
P (φ(X) ≥ E (φ(X)) + σt) ≤ e−t2/2 .

Let L be a subspace of finite dimension andM be a subspace of dimension
M , φM is defined as a function of L into R by

φM(f) = ‖PM(f)‖

which is 1-Lipschitz. Tsirelson’s Lemma applies for t =
√

4 log κM + 2u yielding
for W = PLdWt which is white noise on L

P

(
‖PMW‖ ≥ E(‖PMW‖) +

√
4 logκM + 2u

)
≤ κ−2Me−u .

10



Now as E(‖PMW‖) ≤ (E(‖PMW‖2))1/2 =
√
M , one derives

P

(
‖PMW‖ ≥

√
M +

√
4 logκM + 2u

)
≤ κ−2Me−u .

Noticing now that

P

(
∃γ ∈ Γ, ‖PMγ

W‖ ≥
√
Mγ +

√
4 logκMγ + 2u

)
≤
∑

γ∈Γ

P

(
‖PMγ

W‖ ≥
√
Mγ +

√
4 logκMγ + 2u

)

≤
∑

γ∈Γ

κ−2Mγe−u

≤
κ∑

n=1

(
n

κ

)
κ−2ne−u ≤

κ∑

n=1

κ−ne−u

≤ κ−1

1− κ−1
e−u

P

(
∃γ ∈ Γ, ‖PMγ

W‖ ≥
√
Mγ +

√
4 logκMγ + 2u

)
≤ 2

κ
e−u

The proof of Theorem 1 given in Appendix ?? defines the best oracle model
MO as the minimize of the deterministic quantity

min
γ∈Γ
‖f − PMγ

f‖2 + λ2 log κε2Mγ

and let fO = PMO
f and MO = dim(MO). Lemma 1 is used to obtain for all

u > 0

P (‖f − F‖2 − 4(‖f − fO‖2 + ε2λ2 log κMO) ≥ 32ε2u) ≤ 2

κ
e−u

which implies the bound of Theorem 1 by integration over u.

Corollary 1. For the choice of the precision ν = ε in a wavelet basis, Theorem 1
implies Theorem ?? up to the constants.

Proof. For this choice N−1/2 = ν, L = Vν , Mγ is the set of all subspaces
spanned by some wavelet of scale larger than ν and κ ≤ Cε−(p+5).

The minimization of

M̂ = argmin
Mγ ,γ∈Γ

‖PLY − PMγ
Y ‖2 + λ2 log κε2Mγ

selects the coefficients that are above a threshold T = λ
√

log κε which is up to
the constant the threshold proposed by Donoho and Johnstone. The estimators
in both Theorems are thus the same for a suitable choice of λ.
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Now

E(‖f − F‖2) ≤ Cmin
γ∈Γ
‖f − PMγ

f‖2 + λ2 logNε2Mγ + ε2

≤ Cλ2 logN min
γ∈Γ
‖f − PMγ

f‖2 + ε2Mγ + ε2

E(‖f − F‖2) ≤ Cλ2 logN(E(‖f − FO‖2) + ε2)

and thus the bound of Theorem ?? is obtained.

The deterministic quantity

min
γ∈Γ
‖f − PMγ

f‖2 + λ2 log κε2Mγ +
8

κ
ε2

is thus the analog of the oracle risk of the thresholding estimator and therefore
will also be called oracle risk.

This oracle risk

min
γ∈Γ
‖f − PMγ

f‖2 + λ2 log κε2Mγ + ε2

depends on the precision ν through the collection {Mγ}γ∈Γ. This precision
should depend on the noise level ε. Indeed, on the one hand, the number κ
of generators of the models should be controlled so that logκ remains small
comparing to ε2. On the other hand, the models should be rich enough to
guaranty that the minimum of the oracle risk is small. This leads to a trade-off
which is satisfied for example in most case by letting ν = ε for both the wavelet
and the curvelets.

Proof. Let Ȳ = PLY , f̄ = PLf . Recall that

F = argmin
f̃=PMγ f̄

γ∈Γ

‖Ȳ − f̃‖2 + λ2 log κε2 dim(Mγ) .

Let M̂ the corresponding subspace and MF its dimension
Define

fO = argmin
f̃=PMγ f̄

γ∈Γ

‖f̄ − f̃‖2 + λ2 log κε2 dim(Mγ) .

LetMO the corresponding subspace and MO its dimension.
By construction,

‖Ȳ − F‖2 + λ2 log κε2MF ≤ ‖Ȳ − fO‖2 + λ2 log κε2MO

using ‖Ȳ −F‖2 = ‖Ȳ − f̄‖2 + ‖f̄ −F‖2 + 2〈Ȳ − f̄ , f̄ −F 〉 and a similar equality
for ‖Ȳ − fO‖2, one obtains

‖f̄ − F‖2 + λ2 log κε2MF ≤ ‖f̄ − fO‖2 + λ2 log κε2MO

+ 2〈Ȳ − f̄ , F − fO〉
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One should now concentrate on the bound on the scalar product :

|2〈Ȳ − f̄ , F − fO〉| = |2〈εPM̂∪MO
W,F − fO〉|

≤ 2ε‖P
M̂∪MO

W‖(‖f̄ − F‖+ ‖f̄ − fO‖)

Using Lemma 1, with a probability greater than 1− 2
κe
−u

≤ 2ε(
√
MO +MF +

√
4 logκ(MO +MF ) + 2u)(‖f̄ − F‖+ ‖f̄ − fO‖)

and using 2xy ≤ β2x2 + β−2y2 successively with β = α and β = 1

|2〈Ȳ − f̄ , F − fO〉| ≤ (α22(‖f̄ − fO‖2 + ‖f̄ − F‖2) + α−22ε2(MO +MF + 4 log κ(MO +MF ) + 2u)) .

This leads to

(1 − 2α2)‖f − F‖2 ≤ (1 + 2α2)‖f − fO‖2

+ ε2(λ2 log κ+ 2α−2(1 + 4 logκ))MO

+ ε2(2α−2(1 + 4 logκ)− λ2 log κ)MF

+ 4ε2α−2u

Choosing α = 1
2 gives

1

2
‖f − F‖2 ≤ 3

2
‖f − fO‖2

+ ε2(λ2 log κ+ 8(1 + 4 log κ))MO

+ ε2(8(1 + 4 log κ)− λ2 log κ)MF

+ 16ε2u

So that if λ2 ≥ 32 + 8
logκ

‖f − F‖2 ≤ 3‖f − fO‖2

+ 4ε2λ2 log κMO

+ 32ε2u

which implies

‖f − F‖2 ≤ 4(‖f − fO‖2 + ε2λ2 log κMO) + 32ε2u

where this results holds with probability greater than 1− 2
κe
−u.

Recalling that this is valid for all u ≥ 0, one has

P (‖f − F‖2 − 4(‖f − fO‖2 + ε2λ2 log κMO) ≥ 32ε2u) ≤ 2

κ
e−u
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which implies by integration over u

E(‖f − F‖2 − 4(‖f − fO‖2 + ε2λ2 log κMO)) ≤ 32ε2
2

κ

that is the bound of Theorem 1

E(‖f − F‖2) ≤ 4(‖f − fO‖2 + ε2λ2 log κMO) + 32ε2
1

κ
.

5 Geometrical Representation
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